
International Journal of ITS Research, Vol. x, No.x, xxxxxx 20xx

Photo-Realistic Driving Simulator using Eigen Texture and

Real-Time Restoration Techniques by GPU

Ryo Sato*1 Shintaro Ono*2 Hiroshi Kawasaki*1 Katsushi Ikeuchi*2

Saitama University *1

(255 Shimo-Ohkubo, Sakura-ku, Saitama 338-8570 JAPAN, +81-48-858-3855,

{satou, kawasaki}@cgv.ics.saitama-u.ac.jp)

The University of Tokyo*2

(4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 JAPAN, +81-3-5452-6242,

{onoshin, ki}@cvl.iis.u-tokyo.ac.jp)

Computer modeling of a large-scale scene such as a city is an important topic in ITS, with applications in driving

simulation, car navigation, city planning, etc. Image-Based Rendering (IBR) is an effective method for presenting a

realistic scene, where real images are stored as a database in advance, and a novel view can be synthesized by cutting

and stitching images in the database. However, the large size of the image database in IBR causes serious problems in

actual applications, requiring the use of compression techniques. We propose a compression technique based on eigen

images combined with a block-matching technique to get a better result. We also propose a technique to uncompress the

data on the fly by using a Graphic Processing Unit (GPU), allowing us to perform high-speed rendering without raising

the load on the CPU. This technique is also promising as a means of achieving realistic driving simulation systems.

Keywords: Image compression, Driving Simulator, Image-Based Rendering, GPU, Omni-directional image

1. Introduction

In recent years, research into computer modeling of

large-scale scenes such as a city has been intensively

conducted in many fields including ITS. For constructing

and expressing such large scenes, Model-Based

Rendering (MBR) and Image Based-Rendering (IBR)

are mainly proposed.

MBR is a classical method that can easily reconstruct

a virtual view from any arbitrary viewpoint by using

explicit 3-D geometric model and texture information

about the scene. Almost all traditional driving simulators

are based on MBR architecture. However, reconstruction

of the model of a large scene requires huge human cost

and time, in spite of relatively low photo-reality. It is

especially difficult to represent intricately shaped objects,

such as trees with leaves, realistically by MBR, since

such objects are hard to model with all texture

information.

On the other hand, IBR is a method that reconstructs

a virtual view by using a number of images captured

beforehand. IBR can easily express the scene with high

photo-reality even for intricately shaped objects, since

images are used. A driving view generation system using

IBR has been proposed [7] that can be created with far

less human effort than one that uses MBR. However, one

of the disadvantages of IBR is that it requires a large

quantity of image data to render large scenes. Efficiently

compressing the image data allows a realistic

construction of a large scene while keeping the data size

manageable.

In this paper, our purpose is to propose a system that

efficiently compresses image data for IBR. IBR requires

almost random access to a huge image database

depending on view directions. In addition, since large-

scene data is necessary for IBR, omnidirectional images

that can capture the whole hemisphere in one shot are

often used for efficiency. We noticed that the sequence

of omnidirectional images captured along a road

contains redundancies because the same object is

captured from multiple directions. Exploiting this, we

propose an effective compression method for the data by

using an eigen texture method: applying principal

component analysis (PCA) to particular image

sequences [9].

This texture compression and restoration method is

considered to be suitable for the feature of IBR that

requires random access to a large image database. It is

known that the eigen texture method can give a high

compression ratio if the similarity among images in the

image sequence is high, but gives a poor ratio if the

sequence includes even subtle gaps caused by error. To

improve the compression ratio, we propose accurate

tracking by using block matching, based on Epipolar

Plane Image (EPI) analysis [10].

The compressed image data in the eigen texture

method can be restored by the product-sum operation of

the eigen image with weighting coefficient, which

requires the linear sum of every pixel. However, this

processing becomes a problem in a case requiring real-

time processing, such as a driving simulator. So we also

propose a method to restore the compressed data using

the GPU in which parallel processing is available,

facilitating high-speed rendering without a high CPU

International Journal of ITS Research, Vol. 6, No. 2, December 2008

87

Photo-Realistic Driving Simulator using Eigen Texture and Real-Time Restoration Techniques by GPU

load. By using the proposed methods, we can realize

real-time rendering with IBR on a standard PC and

produce a realistic driving-view simulator.

We present the outline of this system in Section 2,

compression in Section 3, rendering in Section 4,

experiment in Section 5, and our conclusion in Section 6.

In this paper, we refer to the driving-view generation

system as the “driving simulator.”

2. Outline of Realistic Driving Simulation

System

Capturing image

Compression

Rendering

Image rectification for compression

Eigen texture method (PCA)

Tracking

Figure 1. Overview of System

Figure 2. Omnidirectional image

Our system is composed of three processes: (1)

Capturing omnidirectional images, (2) Compressing the

images, and (3) Rendering an arbitrary scene from the

compressed data (Figure 1).

We store sequential omnidirectional images, obtained

by running along the actual road using an on-vehicle

camera and shown in Figure 2, in an image database, and

virtually generate a free-point view by cutting and

stitching the image data based on [7].

The key points of this system are compression of

texture for IBR and fast free-view point rendering using

IBR. In the case of IBR, generally, quite a lot of image

data is necessary for constructing a view even on scene.

Moreover, since the omnidirectional image captures the

spherical range at once, its data size becomes large.

When a virtual viewpoint moves, it is required to load a

vast quantity of image data sequentially into memory in

a computer. This causes the problem that the drawing

speed decreases because of the large CPU load and I/O

transactions.

Therefore, we propose a method to compress images

using high redundancy between adjacent frames on the

omnidirectional image. We also need to consider the

decompression algorithm to efficiently achieve real-time

rendering.

3. Compression Method

The compression procedure is shown in the right area

of Figure 1. After the simple image rectification, we first

track to find redundancy, which later becomes subject to

be compressed, inside the image sequence. Second, we

compress the tracked partial images by using the eigen

texture method [9].

If the purpose of compression is only for streaming

playback, use of existing video compression

technologies such as MPEG is suitable to achieve a high

compression ratio, which is optimized for restoring a

series of continuous images along a time line. In our case,

however, as mentioned previously, a scene is rendered

by restoring appropriate synthesized images depending

on the viewpoint, using just a part of a huge image

database, which is compressed. This is totally different

from video stream compression, which cannot deal with

such processing.

3.1. Image Rectification

Prior to the compression, omnidirectional images in

the sequence are converted to perspective images

viewing a lateral direction by simple coordinate

conversion. That is, the images are projected onto a

perpendicular plane along the side of the capturing

course, as shown in Figure 3. By doing this, the

transition of an object becomes linear, and appears as a

straight line on an EPI, further described in 3.2.

Figure 3. Rectified image

3.2. Tracking

Tracking is preformed in order to find similar parts in

the image sequence. The image sequence is

omnidirectional, so an object viewed from multiple

directions inside the sequence produces similar images.

To find similarities, a block-matching method based on

the correlative value between images is usually used.

However, if objects move fast between adjacent frames,

the searching path for block-matching becomes long and

the result is usually unstable, especially for flat-colored

blocks. Since this is the case in our input image sequence,

we introduce another tracking method in advance of

block-matching to retrieve a correct block sequence.

2
88

International Journal of ITS Research, Vol. 1, No. 1, December 2003

We propose a two-step method as follows: the first

step is approximate global tracking, and the second step

is precise tracking.

3.2.1. Global tracking by space-time image analysis

We take advantage of space-time image analysis for

global tracking. By accumulating the image sequence in

a temporal direction, a so-called space-time image

volume can be constructed. An Epipolar Plane Image

(EPI) is an image that appears on a planar cross-section

of the space-time volume parallel to an epipolar plane

among the sequential camera positions. In our case, we

assume the plane to be a horizontal plane (Figure 4).

This is true in an ideal case, where the pose of the

capturing camera is upright and it moves on a horizontal

plane. In actual cases this is not strictly true, but it is

sufficient for our purpose since vibration of the camera

is relatively small and can be dealt with by the later

process.

z (Time)

z

u

z (Time)z (Time)

z

u
Figure 4. EPI

The trajectories of edge lines on the EPI are

determined by camera’s moving speed and the distance

between the camera and the object. If the movement of

the camera can be assumed as uniform, or can be

roughly normalized as uniform by some external devices,

the tracking process can simply be resolved into straight

line detection on the EPI.

The tracking can be simplified in the case that the

objects face on an approximately constant plane in the

real world. A series of building facades in an urban

scene is a typical example. In such a case, the global

tracking can be expressed by one parameter: choosing a

typical inclination among the straight lines in the EPI.

Straight lines in the EPI can be detected by applying

edge detection followed by a Hough transform. The

detected line can be described as follows

sincos zu (1)

where the distance between the origin and the line is ,

and the inclination angle between the perpendicular line

and the u-axis is . Since the z-axis corresponds to time

in the EPI, moving one pixel in the z-axis direction

means changing one frame. Therefore, the amount of

movement of the u direction of the object in one frame

can be described as follows.

tan
z

u
 (2)

This is the parameter of the global tracking.

3.2.2. Local Tracking by Block-Matching

In order to get a higher compression ratio, partial

image sequences that are subject to be compressed

should be as similar as possible. We perform local

tracking to achieve this.

The process is shown in figure 5. The global motion

of the object per frame towards the u direction can be

calculated by Eq. (2). According to this, a block image

drawn in bold at frame should move to the dotted

block in frame and . In the actual case, however,

because of vibration and the minute change of the

moving speed of the camera, the corresponding image

blocks are shifted from the result of global tracking.

1f

2f 3f

Therefore, the block image with the highest

correlative value compared with the block image of the

previous frame is searched by doing block matching

between the frames around the result of the global

tracking. The correlative value that is used by block

matching uses a linear correlation coefficient.

Correlation coefficient r is as follows:

i j

ij

i j

ij

i j

ijij

yyxx

yyxx

r
22)()(

))((

 (3)

where , are the pixel values of coordinates (i, j) of

two arbitrary images (X, Y), and

ijx ijy

x , y are those average

values. The image with all the same pixel values

(= in all i, j) is 1.ijx ijy

d

m

n

frame f1

f2

f3

d

m

n

frame f1

f2f2

f3f3

Figure 5. Local tracking by block matching

3.3. Sampling based on angle uniformity

A point in the real scene is viewed in various angles

from a sequence of image capturing points. After the

tracking, we can detect the “viewed angle” of the

targeted points as Figure 6 (a).

3

International Journal of ITS Research, Vol. 6, No. 2, December 2008

89

Photo-Realistic Driving Simulator using Eigen Texture and Real-Time Restoration Techniques by GPU

Throughout all the tracked blocks among captured

images, the distribution of the viewed angles is not

uniform. Some of them become quite similar, especially

when capturing points are far apart from the targeted

point. Therefore, it is not efficient to treat all the

capturing points equally and use all the blocks for

compression.

To solve this problem, the blocks used for

compression are sampled. Considering that synthesis of

free-point view by IBR is based on stitching of spatial

rays, the images are sampled uniformly using an angle

between the assumed wall and viewpoint direction,

(see figure 6). In addition, uniform sampling based on

angle can avoid side effects of unstable tracking for

0 direction.

Wall Data capturing path
Wall Data capturing path

min

Wall Data capturing path

min

(a) Continuous image sequence (b) Uniform angle

Figure 6. Image sampling

3.4. Compression by eigen texture

The first video frame is divided into the unit of the

block of m n (Figure 5). For each block image, the

tracking described in 3.2 and the sampling described in

3.3 are applied up to the d-th frame (= min); then,

the sets of similar block images are obtained.

PCA is applied to each block set, which is compressed

into k eigen images. Applying this to all m n block sets,

the whole image sequence is compressed.

At this time, a high compression ratio can be expected

because the obtained image sets have high correlative

value by using block matching. It is theoretically

possible to apply general compression technologies such

as MPEG for each block. However, they generally target

sequential video and are not suitable for randomly

accessing many frames, which is required in IBR.

4. Rendering

4.1. Restoration of Compressed Images

Restoration of the image uses the eigen image that is

obtained by PCA, and the image of the original i-th

frame can be restored by the linear sum as follows: iX
r

k

kiki VwX
1

 (4)

where k-th eigen image is , weight coefficient of i-th

frame is , and the number of principal components

required in order to achieve a certain cumulative

proportion is r.

kV

ikw

4.2. Rendering algorithm

4.2.1. Rendering side wall

Figure 7 shows our method of rendering compressed

data. Rendering at a certain viewpoint P is to select and

map the texture corresponding to an angle composed of

the viewpoint P and the center of the wall plane. The

texture is restored from eigen images (compressed data)

using the angle (1 , 2 , 3 for each , ,

respectively). Since the angle

1W 2W 3W

 changes dependent on

the motion of viewpoint, it can generate the free

viewpoint images.

4.2.2. Rendering the camera moving direction (front

wall)

Since the image for which the viewing angle is less

than threshold min is not sampled for compression,

images cannot be recovered for that direction (it

corresponds to the camera’s moving direction). In our

method, we directly use an omnidirectional image that

was captured nearest from the viewpoint for the

camera’s moving direction. For rendering, we map the

image on a front wall as shown in Figure 7 (b). The left

figure shows that the viewpoint is exactly on the

capturing path, and the right figure shows that the

viewpoint moves to the left lane.

90

Eigen images for W1

Eigen images for W2

Eigen images for W3

min
Rendering Plane

Restoration

Restoration
2

3

Restoration

1

90

Eigen images for W1Eigen images for W1

Eigen images for W2Eigen images for W2

Eigen images for W3Eigen images for W3

min
Rendering PlaneRendering Plane

Restoration

Restoration
22

3

Restoration

11

Top view

View point P

2

3

Side Wall

W 3

W 2

W 1

Top view

View point P

2

3

Side Wall

W 3W 3

W 2W 2

W 1W 1

(a) Rendering side wall

4
90

International Journal of ITS Research, Vol. 1, No. 1, December 2003

Side wall

min

Front wall

min

Side wall

Top view

Capturing path

min

min

Top view

(b) Arrangement of walls.

Figure 7. Rendering algorithm

4.3. Fast Restoration using GPU

We explain how to restore an original image

using figure 8. From the viewpoint of computer

architecture, first the compressed data (eigen images

and weight parameters) are loaded onto the

main memory, and the product-sum operation of and

is processed using the CPU (Figure 8.(a)). The

image obtained is then passed to the GPU (a core chip in

graphics hardware) as a texture, and it is used for texture

mapping. This is an ordinary CPU-based restoration

process. However, when restoring the original image

, second, a procedure similar to is needed in a

weighting coefficient, and processing takes time. The

complexity of this method is , so the load on the

CPU increases rapidly if the texture size becomes large.

1X

kV ikw

kV

kw1

2X kw2

)(2nO

On the other hand, graphics hardware is improving in

performance recently, and it is now used for multiple

purposes. In our case, we propose to restore the original

image by using the GPU. After the compressed data have

been read using the CPU, the data are passed to the GPU

as textures, and a product-sum operation is processed

only in the fragment shader of the GPU (figure 8.(b)).

Even when restoring the original image , the data

can be processed by the product-sum operation of

and , which have been held beforehand, and it is

not necessary to remake a texture. So this permits

restoration of an original image without increasing the

load on the CPU. And calculation load can be set

constant even if the texture size becomes large.

2X

kV kw2

We implemented product-sum operation on the

fragment shader of the GPU as a multi texture technique,

which can store several textures for the same polygon.

We used the eigen image texture, the weight coefficient

texture, and the average texture as the multi texture

(Figure 9). In eigen image texture, eigen image from

to is arranged to the u coordinate in order. In weight

coefficient texture, the weight coefficient corresponding

to from to is arranged in the same way. In

average texture, the average value from 1 to i is arranged

in the same way. So the images are restored by

calculating the product-sum of Eq. (4) for each pixel,

using multiple textures. When the view direction is

changed, an image can be restored correctly by

retrieving a weight from the weight texture.

1V

kV

kV kw1 ikw

CPU processing

Reading eigen image data

Texture mapping

GPU processing

kV1V 2V ...

11w 12w kw1

21w 22w kw 2

1iw 2iw ikw

kV1V 2V

11w 12w kw1

+

= iX

Product sum operation (Restoration)

......

...

...

...

...

...

...+ +

CPU processing

Reading eigen image data

Texture mapping

GPU processing

kV1V 2V ...

11w 12w kw1

21w 22w kw 2

1iw 2iw ikw

kV1V 2V

11w 12w kw1

+

= iX

Product sum operation (Restoration)

......

...

...

...

...

...

...+ +

CPU processing

Reading eigen image data

Multi texture mapping (Restoration)

GPU processing

= iX

Fragment shader

kV

1V 2V

Passing as texture

kV1V 2V ... 21w 22w kw 2

1iw 2iw ikw

11w 12w kw1

......

...

...

...

...

...

21w 22w kw 2

1iw 2iw ikw

11w 12w kw1

......

...

...

...

...

...

...

CPU processing

Reading eigen image data

Multi texture mapping (Restoration)

GPU processing

= iX

Fragment shader

kV

1V 2V

Passing as texture

kV1V 2V ... 21w 22w kw 2

1iw 2iw ikw

11w 12w kw1

......

...

...

...

...

...

21w 22w kw 2

1iw 2iw ikw

11w 12w kw1

......

...

...

...

...

...

...

(a) CPU-based (b) GPU-based

Figure 8. Image restoration process

Eigen image texture

RGB

Parameter texture

Average texture
Rendering image

...

...

...

...

...

...

21w 1iw11w 12w kw122w kw 22iw ikw...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...ave2ave1

...

...

...

ave i

VkV1 V2

Multi texture

Eigen image texture

RGB

Parameter texture

Average texture
Rendering image

......

......

......

......

......

......

21w 1iw11w 12w kw122w kw 22iw ikw......
......

......

......

......

......

......

......

......

...

...

...

...

...

......

......

......

......

......

...

...

...

...

...

......

......

......

......

......

......

......ave2ave1

......

......

......

ave i

VkVkV1V1 V2V2

Multi texture

Figure 9. Implementation of multi-texture
mapping

5. Experiment

5.1. Acquisition of omnidirectional image

Many of the applications of IBR make use of

omnidirectional images because a wide field of view is

available [2-4]. Omnidirectional images are usually

acquired in one of two ways. The first uses a rotationally

symmetric mirror and a single camera [5], and the

second uses multiple cameras and merges them [6].

5

International Journal of ITS Research, Vol. 6, No. 2, December 2008

91

Photo-Realistic Driving Simulator using Eigen Texture and Real-Time Restoration Techniques by GPU

The rotationally symmetric mirror and a single camera

have the advantage that the 360 degree horizontal

panoramic image is captured in a single shot. However,

it is difficult to obtain a sufficient resolution with current

CCDs for the realistic rendering of a city.

(a1) Example 1, by Tracking T1

On the other hand, omnidirectional imaging systems

using multiple cameras, which currently improve the

direction problems, can solve the problem [6, 8].

Therefore, we use a multiple camera-based system

(Figure 10) to capture the texture data. The image is

captured using synchronized CCDs, so is temporally

consistent.

(a2) Example 1, by Tracking T2

(b1) Example 2, by Tracking T1

(b2) Example 2, by Tracking T2

Figure 11. Block images resulting from global
tracking using EPI analysis (T1), and from
global and local tracking using block matching
after EPI analysis (T2).

0

0.05

0.1

0.15

0.2

0.25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Number of eigen image

E
ig

en
 v

a
lu

e EPI

EPI+Block matching

Figure 10. Capturing camera

5.2. Result of Tracking and Compression

Each of the omnidirectional images is divided into a

unit of 16 16, and the experiment of compression is

done using the image row of 70 frames (sampled = 1

degree, min = 20 degree). Here, let us describe only

global tracking using EPI as T1, and both global and

local tracking using EPI and block matching as T2. Figure 12. Eigen value

In Figure 11, (a1), (b1) are the results of the block

images obtained by T1, and (a2), (b2) are those by T2. It

turns out that the objects vibrate after T1, but not after

T2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Number of eigen image

C
u
m

u
la

ti
v
e
 p

ro
p
o
ti

o
n

EPI

EPI+Block matching

Figure 12 shows eigen values in descending order in

the two cases of tracking, T1 and T2. It shows that T2

exceeds T1, regarding eigen values corresponding to the

1st, 2nd, and 3rd principal components, especially for

the 1st principal component. This quantitatively ensures

that more similar block images were able to be tracked

by using block matching.

Figure 13 shows the cumulative proportion of eigen

values against component images. The graph based on

T2 has risen more quickly than the graph based on T1,

meaning that the original image is reconstructed by

fewer images.

Figure 13. Cumulative proportion

20

25

30

35

40

45

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Number of eigen image

P
S
N

R
 [
d
b
]

EPI

EPI+Block matching

Figure 14 shows PSNR (peak signal-to-noise ratio) for

various numbers of eigen images. It turns out that using

T2, a high-quality image can be restored by fewer

images compared with T1. It also proves that 40dB of

PSNR, which is generally recognized as providing

enough quality in video compression, is achieved by

using 30% numbers of eigen images.

Table 1 shows the final results of these compressions.

As a result, it turns out that the compression ratio is

improved. Figure 14. PSNR

6
92

International Journal of ITS Research, Vol. 1, No. 1, December 2003

Table 1. Result of compression

Example 1 (T1) EPI (T2) EPI+Blockmaching

Average of Correlative value 0.756491 0.936779

Cumulative proportion 50% 7.3 4.3

(Compression ratio of data) 28.1/280KB 16.6/280KB

Cumulative proportion 70% 14.0 10.6

(Compression ratio) 53.6/280KB 40.9/280KB

Cumulative proportion 90% 28.6 28.3

(Compression ratio) 109/280KB 108/280KB

Example 2 EPI EPI+Blockmaching

Average of Correlative value 0.842592 0.929996

Cumulative proportion 50% 7.0 5.0

(Compression ratio) 26.7/280KB 19.1/280KB

Cumulative proportion 70% 15.0 12.0

(Compression ratio) 57.3/280KB 45.8/280KB

Cumulative proportion 90% 30.3 28.0

(Compression ratio) 115/280KB 107/280KB

5.3. Comparison in Processing Time for

Rendering

The processing time for rendering by the proposed

method was compared with that of the conventional

method. The comparison is performed by measuring the

time of processing that repeats the process of restoring

the original 70 images sequentially 100 times. The PC

used is Intel Core 2 (2.66GHz), and the GPU is Quadro

FX 550.

The result is the graph of figure 15. The horizontal

axis shows image size and the vertical axis shows

processing time (average of 10-times trial). Both

rendering methods took approximately the same

processing time when the image size was smaller than 64

64 or less, but the processing time using the

conventional method (CPU) increased rapidly as the

image size became larger.

On the other hand, the proposed rendering method

kept constant processing time regardless of the image

size. Therefore, by the rendering method using the GPU,

it was shown that high speed and stable rendering are

realizable.

0

10

20

30

40

50

60

70

16*16 32*32 64*64 128*128 192*192 256*256

Size of image (pixel)

fr
a
m

e
 p

e
r
se

c
o
n
d
 (
fp

s)

CPU-based

GPU-based

Figure 15. Comparison of processing time

5.4. Result of rendering

The rendering of a large-scale scene was done actually

by the rendering algorithm described in 4.2. Figure 16 (a),

(b), (c) are the results of rendering, which are the scenes

from viewpoints (a), (b), (c) respectively in Figure 16

(d). These scenes are rendered by sum of eigen images

under 75% cumulative proportion.

5.5. Experimental Evaluation by Test Subjects

To confirm whether there exist any serious influences

in image compression, we performed an experimental

evaluation by test subjects. We showed two videos, one

a simple raw image sequence as shown in Figure 2, and

the other a rendered image sequence generated by our

methods (For convenience, two videos are again encoded

by MPEG1 with same bit rates). We asked our subjects

how different two videos are as driving scenes, and got

the result as Table 2.

In spite of the fact that we showed original raw images

as comparative counterparts of compressed images, there

were 5 persons out of 15 who replied that they were

“different.” No one replied that they were “totally

different.”

Table 2. Result of evaluation experiment

Evaluation result person

Totally identical 2

Similar 4

Undecided 4

Different 5

Totally different 0

7

International Journal of ITS Research, Vol. 6, No. 2, December 2008

93

Photo-Realistic Driving Simulator using Eigen Texture and Real-Time Restoration Techniques by GPU

(a)

(b)

(c)

(a)

(b)

(c)

Rendering Plane

Driving Path

Rendering Plane

(a)

(b)

(c)

Rendering Plane

Driving Path

Rendering Plane

(d) Viewpoints of the scenes

Figure 16. Result of rendering

6. Conclusion

In this paper, we proposed two technologies for a

photo-realistic driving simulator. One is the novel

compression method for omnidirectional images by

using eigen textures, and the other is a high-speed

rendering algorithm using the GPU.

Since compression ratio becomes low when there is a

translational difference among a series of image blocks

to be compressed, we proposed a tracking method using

block matching based on EPI analysis, and improved the

compression ratio.

The compression data can be easily restored by a

product-sum operation of the eigen images and the

weight coefficient. Taking advantage of the fact that this

operation is totally linear, we implemented the operation

using a fragment shader in our graphics hardware, and

achieved more high-speed and stable rendering without

raising the load of CPU.

By this system, a photo-realistic driving simulator can

be achieved.

References
[1] J. Oike, T. Oo, H. Kawasaki, and Y. Ohsawa,

“Compression of View Dependent Texture for

Omnidirectional Image (in Japanese)”, Forum on

Information Technology (FIT), Sep. 2004.

[2] C. J. Taylor, “Video plus”, IEEE Workshop on

Omnidirectional Vision, pp. 3-11, 2000.

[3] H. Kawasaki, K. Ikeuchi, and M. Sakauchi, “Light

field rendering for image-scale scenes”, Proc.
International Conference on Computer Vision and

Pattern Recognition (CVPR), Vol. 2, pp. 64-71, Kauai,

Hawaii, US, 2001.

[4] M. Hori, M. Kanbara, and N. Yokoya, “Novel

Stereoscopic View Generation by Image-Based

Rendering Coordinated with Depth Information (in

Japanese)”, IEICE Technical Report, PRMU2006-185,

2007.

[5] Y. Onoue, K. Yamasawa, H. Takemura, and N.

Yokoya, “Telepresence by realtime view-dependent

image generation from omnidirectional video streams”,

Computer Vision and Image Understanding (CVIU), pp.

154-165, 1998.

[6] T. Mikami, T. Oo, S. Ono, H. Kawasaki, Y. Osawa,

K. Ikeuchi, “Distortion-Free Fusion of Multiple Video

Camera Images Using EPI Analysis”, IEICE

Transactions on Information and Systems, Vol. J89-D,

No. 6, pp. 1336-1347, Jun. 2006.

[7] S. Ono, K. Ogawara, M. Kagesawa, H. Kawasaki, M.

Onuki, K. Honda, and K. Ikeuchi, “Development of

Photo-Realistic and Interactive Driving View Generator

by Synthesizing Real Image and Artificial Geometry

Model”, International Journal of ITS Research, Vol. 3,

No. 1, pp.19-27, Nov. 2005.

[8] Point Grey Research Inc, “Ladybug2”,

http://www.ptgrey.com

[9] K. Nishino, Y. Sato, K. Ikeuchi, “Eigen-texture

method: Appearance Compression based on 3D Model”,

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 618-624, Jun. 1999.

[10] R. Bolles, H. Baker and D. Marimont: “Epipolar

plane image analysis: an approach to determining

structure from motion”, Int. J. of Computer Vision, Vol.

1, pp. 7–55, 1987.

8
94

International Journal of ITS Research, Vol. 1, No. 1, December 2003

Ryo Sato received the BE degree from

Saitama University in 2007. Currently

he is a master student in Graduate

School of Science and Engineering in

Saitama University.

Shintaro Ono received the BE degree in

2001 and PhD degree in 2006 from The

University of Tokyo. Currently he is a

Project Research Associate in

Collaborative Research Center for

Advanced Mobility (ITS Center), The

University of Tokyo, and Joint Research

Staff in Saitama University. His research interests

include computer vision/graphics and sensing system for

ITS, and digital archiving of cultural heritage objects.

Hiroshi Kawasaki received the Ph.D.

degree in Information and

Communication Engineering from

University of Tokyo, Japan, in 2003. He

started working at Saitama University in

2003. Prior to Saitama University, he

worked at Microsoft Research Redmond

as an internship in 2000. His current research focus is on

capturing a shape and texture and rendering them photo-

realistically in the computer for ITS and VR/MR systems.

He has published over 40 research papers including

CVPR, IJCV, 3DIM, Eurographics and MVA in

computer vision, computer graphics and ITS and won

several awards including Songde Ma Outstanding Paper

Award (best paper for ACCV) in 2007.

Katsushi Ikeuchi received the BE

degree from Kyoto University in 1973

and the PhD degree from the University

of Tokyo in 1978. After working at the

AI Lab in MIT, Electrotechnical

Laboratory in MITI, and the School of

Computer Science in CMU, he joined

the University of Tokyo in 1996, and is currently a full

professor. His research interest spans computer vision

and graphics, virtual reality, robotics, and ITS. In these

research fields, he has received several awards, including

the David Marr Prize and IEEE R&A K-S Fu memorial

best transaction paper award. In addition, in 1992, his

paper was selected as one of the most influential papers

to have appeared in the AI Journal within the past 10

years. His activities include general chair, IROS95,

ITSC00, IV01, IV06; program chair, CVPR96, ICCV03;

Associate Editor, IEEE TRA, IEEE TPAMI;

distinguished lecture SPS (2000-2002) , RAS (2004-

2006). He was elected as an IEEE fellow in 1998. He is

the EIC of the International Journal of Computer Vision.

9

International Journal of ITS Research, Vol. 6, No. 2, December 2008

95

• Received date: March 21, 2008

• Received in revised form: September 8, 2008

• Accepted date: October 30, 2008

• Editor: Shinji Ozawa

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

