
International Journal of ITS Research, Vol. 4, No.1, December 2006 

Fusion of Vision, GPS and 3D Gyro Data in Solving Camera Registration 

Problem for Direct Visual Navigation 

Zhencheng Hu*1 Keiichi Uchimura*2

Computer Science Dept., Kumamoto Univ. *1 

(2-39-1 Kurokami, Kumamoto, (096)342-3894, E-mail:hu@cs.kumamoto-u.ac.jp) 

Dept. of Systems and Information, Graduate School of Science and Technology, Kumamoto Univ. *2

 (2-39-1 Kurokami, Kumamoto, (096)342-3638, E-mail:uchimura@cs.kumamoto-u.ac.jp)

This paper presents a precise and robust camera registration solution for the novel vision-based road navigation 

system - VICNAS, which superimposes virtual 3D navigation indicators and traffic signs upon the real road view in an 

Augmented Reality (AR) space. Traditional vision based or inertial sensor based solutions of registration problem are 

mostly designed for well-structured environment, which is however unavailable in a wide-open uncontrolled road 

environment for navigation purposes. This paper proposed a hybrid system that combines computer vision, GPS and 

3D inertial gyroscope technologies to provide precise and robust camera pose estimation. The fusion approach is based 

on our PMM (parameterized model matching) algorithm, in which the road shape model is derived from the digital map 

data, and matched with road features extracted from real images. Inertial data estimates the initial possible motion, and 

also serves as relative tolerance to stable the pose output. The algorithms proposed in this paper are validated with the 

experimental results of real road tests under different road conditions. 
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1. Introduction 

Tracking a moving camera’s three-dimensional (3D) 

position and orientation is essential to the so-called 

registration problem in an Augmented Reality Context. 

The objects in the real and virtual world must be 

properly aligned with respect to each other, which 

requires knowing the observer’s exact 3D viewing pose 

(position and orientation) data. Especially when the 

observer (camera) is moving, accurate estimation of the 

3D pose data and tracking the temporal coherence from 

successive images will absolutely affect the synthesizing 

accuracy and visual performance of virtual objects in the 

AR space.

To deal with this problem, many approaches have 

been proposed in recent years1,2,3. Previous work in this 

area can be divided into three main categories: 1) 

solutions based on external tracking devices like inertial 

sensors, beacons or transponders, 2) image processing 

solutions that directly estimate camera pose from the 

same imagery observed by the viewer, 3) hybrid 

solutions attempt to overcome the drawbacks of any 

single sensing solution. 

Inertial sensors are widely used for motion tracking4,5.

With the characteristics of self-contained, source-less 

and high sampling rate, they are suitable for tracking the 

rapid motions like vehicle or aviation movement. 

However, since inertial sensors only measure the 

variation rate or accelerations, the output signals have to 

be integrated to obtain the position and orientation data. 

As a result, longer integrated time produces significant 

accumulated drift because of noise or bias.  

The general concept of vision-based camera 3D pose 

estimation is to find the best set of camera position and 

orientation data (the six extrinsic parameters) to fit a 

known model in the target image6,7,8. Unlike other 

sensing technologies, vision solutions directly estimate 

camera pose from the same imagery that is also used as 

the real world background, therefore vision solutions 

always offer the best visual perceived performance when 

the virtual objects are projected to the background. 

However, vision solutions also suffer from the high 

computational cost, sensitive to noise and lack of 

robustness since they depend on image feature extraction 

and tracking result. 

Hybrid solutions are widely applied in recent research 

works since different sensors can be used to compensate 

others limitation. Chai et al.9 employs an adaptive pose 

estimator with vision and inertial sensors for overcoming 

the problems of inertial sensor drift and vision sensor 

slow measurement. The extended Kalman filter (EKF) is 

used for data fusion and error compensation. You et al. 
10 also combined vision and inertial sensor with a two-

channel complementary EKF, which can take advantage 

of the low-frequency stability of vision sensors and the 

high-frequency tracking of gyro sensors. However, most 

of these approaches are designed for well-structured 

environment. Especially for the vision sensors, 

predefined artificial markers are vital for feature tracking 

process, which is however unavailable in the outdoor 

uncontrolled road navigation environment.  

For on-road navigation applications, the fast 

translation movement along vehicle’s moving direction 

results in the continuous change of image background. 

In addition, there are no predefined squares or circle 
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markers that can be constantly tracked in the wide-

opened real road scene. Territory map, some landmarks 

and road lane-markers are the only features that can be 

used to determine camera’s pose. Because of these 

factors, this registration problem cannot be solved by 

previous hybrid algorithms. 

In this paper, we extended our previous work3 of pure 

vision based solution to a hybrid solution that combines 

vision, GPS and 3D inertial gyroscope sensing 

technologies. We still restrict our aim at the registration 

problem for on-road navigation applications. The fusion 

approach is based on our PMM (parameterized model 

matching) algorithm, in which the road shape model is 

derived from the digital map referring to GPS absolute 

road position, and matches with road features extracted 

from the real image. Inertial data estimates the initial 

state of searching parameters, and also serves as relative 

tolerance to stable the pose output. Comparing with the 

previous hybrid algorithms, the proposed solution 

employs GPS and inertial sensor to obtain absolute 

position, which leads to the proper road position by 

Map-matching process. Additionally, PMM algorithm 

matches road lane markers with the road shape model 

derived from road map, which makes our algorithm very 

robust to the featureless road environment. 

The paper is organized as follows: the new concept of 

vision-based road navigation system is quickly reviewed 

in Section 2. Section 3 describes our hybrid data fusion 

solution that combines computer vision, GPS and 3D 

gyro data to solve camera registration problem. Section 

4 gives the implementation details of superimposing 

virtual navigation indicators and traffic signs upon real 

road view based on the estimation result from Section 3. 

Experimental results of real road and discussions are 

described in Section 5. 

2. Review of New Road Navigation Concept 

With the development of voice guidance and 

dynamical traffic information exchange techniques, 

recent vehicle navigation systems will guide you with 

voice instructions well in advance of your next move 

along a pre-planned route. However even with the voice 

guidance and digital road map, a driver still has to 

compare by himself the road scene ahead with his digital 

map to determine which lane to take or, at which 

intersection to turn. It is not only inconvenient, but also 

even dangerous in some cases, especially during the 

high-speed driving in dense traffic roads. A new concept 

of direct visual navigation and its prototype system – 

Vision-based Car Navigation System (VICNAS) was 

proposed by the authors3 to overcome this inconvenient 

problem of current navigation system. As shown in Fig. 

1, VICNAS employs Augmented Reality technique to 

superimpose virtual direction indicators and traffic 

information bulletins upon the real driver’s view. 

Since all the virtual indicators and overlay graphics 

have to be aligned properly with the real road scene 

from driver’s view, the accuracy of navigation that 

VICNAS can provide absolutely depends on the 

accuracy of the estimated viewing pose, which means 

camera registration accuracy directly determines the 

visually-perceived performance of AR system.

There are several factors that have to be considered 

to solve the Registration problem for VICNAS. Road 

navigation is mainly used for high speed moving 

vehicles, which gives a fast translation along vehicle’s 

moving axis. No predefined square or circle markers can 

be put in the wide-open real road scene. Territory map, 

some landmarks and road shapes are the only features 

that can be used to determine camera pose. Even small 

drift in camera pose will lead a significant displacement 

of virtual objects on the projected image. 

Fig. 1. Prototype driver interface of VICNAS system

3. Hybrid Solution of Camera Registration 

Our previous work3 employed pure vision-based 

solution for camera registration. It shared similar goals 

with the video-based model tracking solution described 

by Valinetti11. Valinetti introduced a scalar evaluation 

score based on the local image gradient along the 

projected model lines to evaluate the existence 

possibility of certain camera pose values. In our 

Parameterized Model Matching (PMM) algorithm, we 

chose road shape as the target model since it can be 

directly derived from the digital road map and is fairly 

easy to track in different lighting conditions. It 

simplified the 2D-3D feature corresponding problem to a 

2D-2D model matching optimization and showed good 

visual perceived performance.  

However as described in Section 1, like other pure 

vision-based solutions, it suffered from the lack of 

robustness since it depends on image features extraction 

and tracking result. To overcome the problem, this paper 

proposes a hybrid data fusion solution that combines 

vision, GPS and 3D inertial gyroscope sensing 

technologies to provide precise and robust camera pose 

estimation. Fig. 2 shows the basis block diagram of the 

solution. Absolute road position is derived from the 

fusion of GPS and gyro data. Road Modeling Block 
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(RMB) uses digital road map data to generate a shape 

model of roads ahead from this position. It will match 

with the road features extracted from real image and 

output the estimation result. The angular rate data 

obtained from the gyro sensor initializes the possible 

motion, and also serves as relative tolerance to stable the 

final output. 

3.1 Absolute Road Positioning 

In an open, well-communicated environment, 

accuracy of differential GPS (DGPS) sensor can achieve 

1.5m horizontally and 5m in altitude. In urban area, high 

buildings and signal random reflection (so-called multi-

path) will significantly affect GPS accuracy. In this case, 

we use inertial sensors to compensate the GPS data. 

Most navigations systems will use map-matching 

algorithm to pull the absolute positioning data to the 

nearest possible road according to moving trace history. 

Since GPS sampling rate (1Hz~10Hz) normally is 

lower than the inertial sensor sampling rate 

(10Hz~500Hz), the fusion of GPS and 3D gyro for 

absolute road position is based on a predictor-corrector 

control theory as shown in Fig. 3.  

GPS data and gyro data are fed into evaluation 

module and integration module separately. After 

checking data integrity, captured satellites number and 

DOP value, every evaluated trustable GPS data will start 

a new loop and reset gyro’s integrating module. The 

difference between new GPS position and integrated 

gyro’s predication will be fed back into the gyro 

integration module as a dynamical correction factor.  

Assuming  are evaluated 

trustable GPS position data, where  and 
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3.2 Reference Frames for Vision System 

There are five coordinate systems involved in 

VICNAS3: World Coordinate System (WCS), Vehicle 

Coordinate System (VCS), Camera Coordinate System 

(CCS), Inertial Coordinate System (GCS) and Projected 

Image Coordinate System (ICS). As shown in Fig. 4, the 

origin of WCS is located on road centerline as the 

current Map-matching result by comparing digital road 

map with GPS/gyroscope output. Y-axis of WCS is on 

the tangent direction of road centerline, Z-axis points at 

up and X-axis points at left. Assuming local road surface 

is flat, VCS can be treated as the relative WCS with an 

offset and heading angle on the ground. More generally, 

the relative position of WCS and VCS can be described 

as a rigid motion of translation and rotation. 

Mapping from CCS to ICS is a perspective projection, 

while transformation from VCS to CCS can also be 

described as a rigid motion of translation and rotation. 

Therefore, the homogeneous transformation matrix 

between WCS and ICS is shown in eq.(3). 

         (3) WCCi P
TR

EKPEKPp
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where Ci Pp ,  and WP  are the homogeneous coordinates 

of ICS, VCS and WCS respectively. is an arbitrary 

scale factor, K  is called camera intrinsic parameters 

matrix, and R  , T  are the rotation matrix and 

translation vector respectively.
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Fig. 2. Block diagram of our hybrid solution
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Fig. 3. Fusion of GPS and 3D gyro for road positioning 

Fixed camera intrinsic parameters can be easily 

obtained from the initial calibration. Therefore the 

camera pose estimation problem is to compute the 6 

extrinsic parameters in essence. If we collect the 6 

camera extrinsic parameters in one vector , we can 

simply parameterize the perspective mapping 

relationship between the 2D image coordinates in ICS 

and the 3D world coordinates in WCS as follows: 

).;( Wi Pp                            (4) 

In general, each matching pairs of ),( Wi Pp will

contribute to the determination of camera pose vector .

Since it is impossible to obtain the 3D information 
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-5-



Fusion of Vision, GPS and 3D Gyro Data in Solving Camera Registration Problem for Direct Visual Navigation 

directly from image data along, we adopted 

parameterized model matching algorithm to transfer the 

direct matching problem to an optimized problem of 

searching the best camera pose set.  

3.3 Road Shape Model 

The information of roads ahead from the current 

road position obtained in Section 3.1 can be extracted 

from the 2D digital navigation map. Road skeleton node 

positions and the associated attributes (road name, 

construction level, direction information and lanes 

number in either direction) are employed to build the 

road shape model.  

We used clothoid curves to fit the road shape 

ahead12. Eq. (5) is a very compact parameterized multi-

lane model on WCS: 

                  (5) 
T
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where li  and ri  are numbers of road lanes on each 

side, i  is the average lane width during this segment. 

i , i  and i  are clothoid shape parameters. Since this 

road model’s origin is based on the road central skeleton 

line, we have to transfer it to the vehicle coordinate 

system according to the current road position’s offset 

and heading angle. This model will then be projected to 

the 2D driver’s view by the perspective mapping from 

eq.(4).
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w
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               a) View from up                         b) View from side 

c) 3D view 

Fig. 4. Reference frames for vision system 

3.4 Model Matching 

Varying camera pose vector  will generate 

different projected road shapes according to eq.(6), thus 

the camera pose estimation problem has been transferred 

to the optimized problem of searching a best camera 

pose vector to match with road image data. Road lane 

markers are extracted from the road images by the WLE 

(White Line Emphasis) filter developed by Oike16. WLE 

filter compares the clockwise moment and local 

summation result of the traditional differential filter [-1, 

1], and output the enhanced lane markers. The filter 

kernel size is Nx1, where N corresponds to lane markers 

maximum width in the image. Pavement boundaries are 

also extracted as adjutant road shape information17.

Gray scale correlation is not preferred in the 

matching process due to various types and colors of road 

lane markers, different lighting and weather conditions 

as well. To counteract this effect, a Road Shape Look-up 

table (RSL) is employed to give peak values at the 

position of lane marker, and lower values at their 

neighbors14.

Therefore, a normalized camera pose estimation 

score function can be given as: 

p

p

RSL

yxpRSLE
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1
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1
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                   (7) 

where  represents the set of points belonging to the 

perspective road model . Every point on the 

road model that has a non-zero RSL value will 

contribute to the score function. In other word, the 

maximum of estimation score will be reached at the 

perfect matching of projective road model to the road 

shapes on the image. 

),( yxp

        Theoretically, the whole region that is lower than 

the disappearing line will be the candidate region for 

searching the lane markers. However in practice, we 

only scan the regions centered by previous extraction 

results of lane markers because of the constraint of road 

shape continuity. With the general camera and lens setup, 

the farthest road lane marker we can detect (width >1 

pixel) will be 80 ~ 100 meters.

A direct search algorithm is adopted in the 

optimization searching operation13, while the fusion of 

vision and gyro data gives out its initial state and 

searching range. Since the gyro data is defined in the 

inertial coordinate system, it is necessary to convert it to 

the world coordinate system. Let ),,( be the 

absolute rotation angle (Euler angle), and 

),,( zyxW  represent the angular rate from inertial 
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sensor output. According to 15, the conversion from 

inertial angular rate to the world will be 

z

y

x

cos/cos0cos/sin

costan1sintan

sin0cos

(8)

Eq. (8) is employed to predict the motion of image 

features. Estimated inertial angular data will be served as 

the initial state and relative searching tolerance in the 

Direct Search algorithm for vision based model-

matching process.  

Gyroscope data will be directly adopted as sensor 

fusion output if one of the following conditions could be 

satisfied. 1) No optimized parameter vector can be found 

in the searching range. 2) There is less or no white lane 

markers can be extracted from input image. 3) Variation 

of image based estimated result has exceeded gyro’s 

accuracy tolerance. 

4. Experiment Result and Discussions

A SONY analog CCD camera was mounted on the 

front roof of test vehicle. Image sequences were 

recorded in NTSC format at the frame rate of 30fps. 

Differential GPS data (Trimble® AgGPS) and inertial 

data (DataTech® GU-3023) were sent to PC’s serial port 

and recorded at the frequency of 10Hz and 60Hz 

seperately. Zenrin® Z-Map was used as the 2D road 

map.  

As the first phase of VICNAS project, our tests 

were based on the off-line processing. Road tests were 

carried out on different kinds of road (express toll-way, 

city highway, downtown street and countryside road), 

different lane structures (one-way or two-way, 1~6 lanes, 

with or without central separators) and shapes (straight, 

curve, S-curve). We assume that white lane markers 

have been painted in most part of the test road. Bad 

weather conditions like snow, heavy rain and fog are not 

considered in this test. Sample images are shown in 

Fig.5.

4.1 Data Fusion Result of GPS and Gyro 

As described in section 3.1, high buildings and 

signal random reflection in urban area will significantly 

affect GPS accuracy. A typical DGPS data error is 

shown in Fig. 6, where “ ” points are DGPS data and a 

significant discontinuous jump can be found on the left 

bottom side. “ ” points are data fusion result where 

gyro data is adopted to compensate GPS data. The 

evaluation module ejects most of the unreliable GPS 

points and interpolates the output with gyro data. In this 

particular example, all GPS data with less than 7 

captured satellites and which DOP value is higher than 

2.1 will be ejected.

                     (1)            (2) 

                     (3)            (4) 

(5) (6)

Fig. 5. Test road environment 

Fig. 6. Data fusion result for absolute road positioning 

Fig. 7. GSP+Vision vs. GPS for road positioning

4.2 Estimation of Heading Angle and Offset 

Because the measuring errors come from both GPS 

data (about 1.5m to 5m) and digital road map data itself 

(Zenrin® Z-Map Town II we used is based on 1:25000 

digitized city map), calculating heading angle and offset 

to the road center line from image data is essential to the 

final synthesizing accuracy and visual performance 

when virtual objects are superimposing to the real road 

scene.
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Fig.7 shows an example that even accurate GPS data 

has to be corrected by vision based estimation result. 

Image samples are shown in Fig.5(1) and Fig.5(2) while 

our test car changed to the right lane to avoid a stopped 

vehicle and returned back to the left lane later. GPS trace 

positions are plotted as “ ” on the digital map as shown 

in Fig.7 and it is obvious incorrect. With our proposed 

camera pose estimation algorithm, test car’s offset 

distance and heading angle to road center line were 

calculated and the new GPS+Vision positions are plotted 

as “ ” in Fig.7. 

4.3 On-Board Camera Pose Estimation Result 

An example of lane changing is shown as the 

second scene of Fig.5. We changed to the right lane to 

avoid a stopped car and returned back to the left lane 

after. Fig.8 shows part of the angular rate estimation 

results of our hybrid approach. The results here has 

already been eliminated the original displacement 

between the camera and the vehicle reference frame. A 

very stable yaw rate change between frame #20 to frame 

#345 corresponds to the fact of changing lane as 

described above. Turbulence of roll and pitch angle rates 

between frame #720 to #760 can also be verified by the 

fact of uneven road surface near the intersection.

Fig.9 shows the result of integrated roll, pitch and 

yaw angle with respect to the world coordinate system. 

Fusion of vision result and gyro data makes our 

algorithm stable and robust, especially during the road 

intersection part and dense traffic scene when vision 

approach cannot work properly because road lane-

markers were occupied or too complex. The accuracy of 

proposed algorithm can also be verified by the fact that 

the track of integrated Yaw angle perfectly matches with 

vehicle’s absolute road position data obtained by 

GPS/gyro sensor (see Chapter 3.1).

Fig. 8. Estimated result of rotation angle rate 

Fig. 9. Integrated pose angle result of our algorithm 

4.4 Visual Perceived Performance Test 

To generate virtual traffic indicators, bulletin 

boards and landmark icons, OpenGL® is employed here 

since it is not only a 3D modeling tool, but also a 

powerful 3D rendering engine to project virtual objects 

onto real-images’ overlay with the proper camera pose 

data and all intrinsic and extrinsic parameters. 

The following navigation information is extracted 

from the digital map: 1) road nodes location and 

segment attributes (name, level, lane info, etc.); 2) 

intersection location, names and crossing angles of the 

roads intersected; 3) landmarks, buildings and other 

value-added objects information (hospitals, gas stations, 

shopping centers, restaurants, etc.). 

All information is dynamically extracted according 

to the current location (within certain range) and driver’s 

preference. 3D objects are generated depending on its 

category: road information such as speed limits, 

direction indicators are modeled as virtual road paintings 

and are located on the road surface, road names and 

intersection information are modeled as virtual traffic 

bulletins mounted on a certain height above the road. 

can be recognized easily. Fig.10 shows some 

superimposing results by projecting the virtual objects 

on the real image overlay. 

Since the ground truth of camera’s extrinsic 

parameters is almost impossible to obtain, the following 

visual perceived performance tests were carried out to 

evaluate the accuracy of proposed algorithm.  

Three typical road scenes were chosen for 

evaluation: an urban road with clearly marked lanes 

which is ideal for vision-based camera pose estimation, a 

widely open countryside road where GPS data was very 

accurate, and a one-lane downtown street with complex 

road markings and uneven road surfaces which was the 

most difficult but common scene for road navigation. 

We picked up some POIs (Point Of Interests) from each 

road and obtained their latitude and longitude data from 

digital road map. All POIs are visible along the driving 

route and no occlusion is considered in the perceived 

performance tests. 

After estimating each frame’s camera pose data, we 

converted the current road position and POIs’ 

latitude/longitude data (which were based on Tokyo 

Datum) to the Euclidean planar coordinate system. With 

the calculated camera’s extrinsic parameters, POIs’ 

WCS coordinates were transformed to the camera based 

CCS coordinates and then projected to the image plane. 

An icon will be rendered on each POI’s projection 

position. Icon’s size and orientation is determined by 

POI’s CCS coordinates. The movie files of evaluation 

results can be downloaded from the following web site: 

http://navi.cs.kumamoto-u.ac.jp/~hu/ITS/image/.

   The following criterion was defined to evaluate the 

POI projection’s accuracy:
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}20{ POIPOI DpQ                                       (9) 

where POIp  is the calculated POI’s projection position 

and  is manually extracted POI’s position from 

each frame. We used a relative wide range to cover the 

slight variety of the reference position  itself in each 

frame. If the distance is less than 20 pixels, we consider 

the estimation result as accurate.  

POID

POID

All three scenes evaluation results are given in 

Table 1~3. Recall ratio is the percentage of accurately 

projected frames via total frames appeared. The results 

of the three scenes verify the high accuracy of camera 

pose estimation data, especially on the clearly marked 

straight roads. Displacements were relatively big on the 

complicated marked road scene like intersection left-turn 

arrow (Road Indicator C) in Scene #3 because vision 

sensor could not provide reliable road shape data due to 

the complicated intersection lane markers. It is the same 

reason for Clinic A and Clinic B in Scene #3. 

Discontinuity of GPS data was happened in Scene #1 

due to a possible signal multi-reflection. POI position 

was updated by 3D gyro sensor only during this period. 

When GPS signal recovered, it caused a sudden 

movement of POI icon (Shop C in Scene #1). A simple 

weight-average filter should solve the problem. 

4.4 Survey On the System Performance 

Total of 50 testers are randomly selected with 

different age, sex, driving history and experience for the 

system performance test of VICNAS. The survey was 

carried out in our simulation environment where 

navigation movies recorded from both commercial 

navigation system and our VICNAS system were shown 

to the testers separately through a 19inch LCD monitor. 

Three deferent road scenes were chosen for the test and 

we selected the most recent off-the-shelf navigation 

system (Toyota DVD-Navi NDCN-D54, as shown in 

Fig.11) as our comparing target. 

Fig. 12. shows the survey result on the item of 

Understandability of these two systems. Comparing with 

the current navigation system, VICNAS is obviously 

much easy to understand and the user-friendly interface 

gives it more potential advantages for future navigation.

The detail evaluation results on the different system 

features of VICNAS, like Displaying Performance,

Operating Safety and Convenience are shown in Table 4, 

where point 5 means the best and point 1 means the 

worst. Very positive result can be seen from most of the 

system features, while some improvements are necessary 

in the displaying performance and system operating 

safety.

Table 1. An urban road with clearly marked lanes (Scene #1, total 2200 frames, 6 POIs) 

Average

Displacement 

(pixels) 

POI Longitude Latitude Elevation (m)
Recall

Ratio (%) 

Gas Station A 130”45’08.725 32”48’14.044 6.0 100 4.7 

Shop A 130”45’20.042 32”48’08.982 6.0 82.3 11.2 

Shop B 130”45’24.996 32”48’08.014 8.0 94.4 8.2 

Shop C 130”45’27.183 32”48’07.136 12.0 100 4.9 

Gas Station B 130”45’40.005 32”48’05.009 6.0 100 7.6 

Restaurant A 130”45’42.106 32”48’04.436 8.0 100 9.1 

Table 2. A widely open countryside road (Scene #2, total 600 frames, 1 POI) 

POI Longitude Latitude Elevation (m)
Recall

Ratio (%) 

Average

Displacement 

(pixels) 

Road Indicator A 130”48’34.876 32”50’13.812 2.0 100 7.6 

Table 3. A one-lane downtown street with complex road markings and uneven road surfaces
(Scene #3, total 1116 frames, 4 POIs) 

POI Longitude Latitude Elevation (m)
Recall

Ratio (%) 

Average

Displacement 

(pixels) 

Road Indicator B 130”41’53.042 32”47’22.806 2.0 100 2.1 

Clinic A 130”41’50.804 32”47’23.187 6.0 76.0 17.2 

Clinic B 130”41’50.028 32”47’23.036 6.0 77.7 14.5 

Road Indicator C 130”41’43.648 32”47’20.634 2.0 63.8 23.5 
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Fig. 10. Superimposing results of virtual navigation information onto real images 

Fig. 11. Output of recent commercial navigation system 

Fig. 12. Survey result on system understandability  

Table 4. Detailed survey result on different system features of 
VICNAS

Items                   Points 1 2 3 4 5 Total

Understandability 0 3 3 12 32 50

Displaying Performance 0 0 10 18 22 50

Operating Safety 0 2 15 19 14 50

Convenience 0 0 9 24 17 50

Fig. 13. Output of refined VICNAS system 

We have refined the output interface according to 

the survey result. 1) Navigation indicators and icons are 

made semi-transparent, and more colorful; 2) Animation 

of indicators and icons are erased to avoid disturbing 

drivers; 3) DTD (Distance To Destination) and DTT 

(Distance To the next Turn) indicators are added to 

properly navigate drivers. Fig.13. shows the refined 

system output. 
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5. Conclusion 

This paper presents a novel framework of vision-

based road navigation system, which superimposes 

virtual 3D navigation indicators and traffic signs onto 

the real road scene in an Augmented Reality (AR) space. 

To properly align the virtual object with real world, this 

paper proposed a hybrid camera pose tracking system 

that combines vision, GPS and 3D inertial gyroscope 

technologies. The fusion approach is based on our PMM 

(parameterized model matching) algorithm, in which the 

road shape model is derived from the digital map 

referring to GPS absolute road position, and matches 

with road features extracted from the real image. Inertial 

data estimates the initial possible motion, and also serves 

as relative tolerance to stable the pose output. The 

algorithms proposed in this paper are validated with the 

experimental results of real road tests under different 

conditions and types of road. 

Error analysis will be one of the most important 

issue to solve before moving to the next stage. Since the 

ground truth of camera’s extrinsic parameters is almost 

impossible to obtain, we plan to adopt You’s method
10

to measure the difference of land marker’s projection 

and the position automatically extracted from the image, 

under different focal length and distance. 

Since the proposed algorithm currently is only 

considered to be worked in good weather condition, with 

paved road surface and relative accurate digital road 

map, the system will not work well or will be less 

accurate when drives in bad weather like heavy rain or 

snow, non-paved roads, or without road shape 

information like newly built roads and no-map area. All 

these options as well as on-line calculation will be 

considered in our future work.

There are still some special road shape segments 

that are not covered by our algorithm of road model 

matching, such as intersection and diversion, which are 

also essential for the on-road navigation. 3D road shape 

is also another interesting topic and it will become more 

commercially valuable when the 3D digital map data is 

available in the near future. Our interests will be 

continuously focused on these topics as well as the real-

time computation and implementations in AR world. 
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