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Sensor fusion of millimeter-wave (MMW) radar and a camera is beneficial for advanced driver assistance functions
such as obstacle avoidance and Stop&Go. In this paper, we propose a method for detecting a moving obstacle using
MMW radar and CCD camera, along with a calibration method for two sensors. Our method is designed for detecting
moving obstacles, such as cars, motorcycles, pedestrians, bicycles, and so on in urban areas, observed by a camera
mounted on a vehicle. In the proposed method, we detect a moving obstacle by estimating image boundaries which
enclose a group of feature points exactly on the obstacle. In order to determine the group, feature points in a whole
image are detected at every image frame and tracked over several consecutive frames, and then we apply a motion
segmentation technique, so-called subspace factorization, developed in the computer vision domain. For robustness in
boundary estimation, we use MMW radar so as to detect the obstacle’s rough position which results in an image region
where an obstacle would exist; the motion segmentation technique is applied toward the tracks that drop in the region.
Note that an obstacle's position detected by MMW radar is remarkably rough because MMW radar has low directional
resolution. Nevertheless, the position contributes to rapid and robust estimation for satisfactory image boundaries. We
demonstrate the validity of the proposed method through experiments using sensors that are mounted on a vehicle.
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1. Introduction

In recent years, radar-based driver assistance systems
such as Adaptive Cruise Control (ACC) have been
introduced to the market by several car manufacturers.
Most of these systems rely on millimeter-wave (MMW)
radar for obtaining information about the vehicle's
environment. In general use, a MMW radar is mounted
on the front of a vehicle. It measures distance and
relative velocity to targets at the front of the vehicle by
scanning in a horizontal plane. For maintaining distance
to a preceding target, it is necessary to detect lane
markings by a camera in order to know whether the
target lies in the current lane of the vehicle and to follow
the target even if the road curves [1][2][3]. Compared
with other long range radars (e.g., laser radar), MMW
radar offers advantages of higher reliability in bad
weather conditions. Thereby the ACCs work reliably and
robustly.

However, most of these systems are designed for
high-speed driving. A MMW radar provides relatively
high distance resolution, but it has low directional
(azimuth/elevation) resolution. Its directional resolution
is sufficient for the ACCs for high-speed driving because
it can be assumed that the vehicle is cruising in a low
traffic density area. Furthermore, the positions of
obstacles observed by the radar are limited to the space
in front of the vehicle. Many moving obstacles such as
automotives, pedestrians, bicycles, and so on exist in a

crowded urban area. It is extremely difficult to detect
these obstacles and measure their accurate positions by a
radar with low directional resolution.

In contrast to MMW radar, a camera provides high
spatial resolution but low accuracy in estimation of the
distance to an obstacle. The high spatial resolution of the
camera can support the low directional resolution of the
radar, and the high distance resolution of the radar can
support the low accuracy in distance estimation of the
camera. Thereby, MMW radar plus camera can be
mutually supportive: their sensor fusion offers benefits
for more advanced driver assistance functions such as
obstacle avoidance and Stop&Go.

Recently, sensor fusion of laser radar and camera(s)
has been developed by several researchers (e.g., [4] [5]
[6]). Laser radar has higher special resolution than
MMW radar; therefore it can detect an occupying area
(i.e. an area where an object obstructs on the road).
However it is more economical to use existing radar-
camera system for more advanced functions.

In this paper, we propose a method for moving
obstacle detection using MMW radar and CCD camera.
Our method is designed for detecting obstacles, which
move across a driver’s view in a small range, observed
by a camera mounted on a vehicle. As shown in Figure 1,
we use a MMW radar for detecting the rough position of
an obstacle, and then we decide a candidate image region
where the obstacle would exist by projecting the detected
position into an image sequence acquired by a camera.
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Figure 1. Diagram of proposed method

Before projecting the position, feature points are
extracted at every image frame and tracked over several
frames. Once the candidate region is decided, we select
the tracks that drop in the region, and apply a motion
segmentation technique toward the tracks. The motion
segmentation technique is the so-called ‘subspace
factorization’ or ‘subspace separation’ in computer
vision domain ([8] [9] [10] [11]). We estimate a linear
motion subspace composed by three tracks of the feature
points exactly on a single moving obstacle using the least
median of squares method (LMedS). Then we select the
tracks of the obstacle by evaluating residuals (See
Section 4 for details). Finally we decide boundaries
which enclose the feature points on the end of the
extracted tracks.

The subspace factorization technique is formulated by
a pure mathematical theory and produces a robust motion
segmentation procedure. In the theory, linear subspaces
are formed under an assumption that object motions are
observed by a camera modeled by an affine projection
(e.g. parallel, weak-perspective or para-perspective
projection). In general, the camera should be modeled by
the perspective projection; therefore, the assumption can
not hold for motions in a real scene (See Subsection 4.1).
However, considering only the motion of a single
moving obstacle, on the contrary, we can assume that the
motion is observed approximately by a camera with an
affine projection. If we could select correct tracks which
belong to the obstacle, it is possible to estimate the
motion subspace that represents the obstacle’s motion
and to select all feature points exactly on the obstacle. In
order to select the correct tracks, we make use of
obstacle detection results from the radar. By projecting a
rough position detected by the radar into the image
sequence, we decide an image region where an obstacle
would exist. By limiting image region and tracks to be

processed, we can robustly estimate the subspace.
Furthermore, we can reduce computational cost by
reducing the number of repeated times in LMedsS,
compared to the case when the region is not decided.

As a previous work, a method for obstacle detection
using MMW radar and a single camera is proposed in
[13]. This method is based on motion stereo and
designed for detecting obstacles which come from far to
near. In this case, the relative speed between the vehicle
and an obstacle should be large for robustly estimating
image boundaries of the obstacle. On the other hand, our
method is designed for detecting an obstacle which
meanders from outside to inside the course of the vehicle.
This is the dangerous situation that obstacles, such as
bicycles and pedestrians, suddenly appear in front of the
vehicle especially in urban areas.

For sensor fusion of MMW radar and camera,
calibration of their locations is also an important issue
because flexible sensor locations are required for car
design. The calibration method should be simple and
easy for mass production. However, in past research for
the sensor fusion of radar and camera (e.g., [5] [6] [13]),
the sensor locations are constrained strictly and the
calibration method is not explicitly mentioned.

In this paper, we also propose a calibration method
for the fusion of radar and camera. Generally, calibration
of sensor location requires estimation of the
transformation between sensor coordinates. In the
proposed method, we simply estimate the homography
that describes transformation between a radar plane
(which is scanned by radar) and an image plane. We use
the calibration result for projecting an obstacle’s position
detected by the radar into the image sequence.

The proposed calibration method can be applied for
line-scanning radar with other wave-lengths such as laser
and infrared-ray. The method may be useful for a newly-
mounted camera and an existing radar system on a
vehicle. Once the homography is obtained, we can easily
visualize radar reflections by projecting reflection points
into an image. We know exactly what causes the radar
reflections by looking up the visualized points in the
image. This approach can be the basis for the sensor
fusion of line-scanning radar and camera.

In the remainder of this paper, the proposed
calibration method is described in Section 2. Section 3
describes a simple method for obstacle detection from
radar signals. The motion segmentation technique is
described in Section 4. Section 5 shows experimental
results, and Section 6 concludes this paper.

2. Calibration between Radar and Camera

We use a MMW radar which scans in a plane, called
the ‘radar plane’. The radar outputs radial distance r,
angle @, relative radial velocity s, and reflection intensity
for every reflection; it acquires many data points of radar
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Figure 2. Geometry of radar and camera

reflections for each scan. In general, we can assume that
all reflection points exist on the radar plane. Accordingly,
we estimate the homography that describes the
relationship between the radar plane and the image plane.

2.1. Geometry of radar and camera

As shown in Figure 2, let (x,,y,,z,)and (x,, yc,zc)be

the radar and the camera coordinates respectively, and
(u,v) be the image plane coordinates. Using

homogeneous coordinates, we can describe the equation
of transformation between (x,,y,,z,,1) and (u,v,]) as

follows.

M

u
v|=P|""| , P=A[R|t]
; .

In the above equation, the 3x3 matrix R and the 3x1
vector t denote, respectively, the rotation and translation
between the sensor’s coordinates; the 3 x 3 matrix A
denotes intrinsic camera parameters, and @ is an
unknown constant. Generally, calibration between the
two sensors requires estimation of the 3x4 matrix P, or
all of the R, t, and A. On the contrary, we describe the
transformation between the radar plane I1, and the

image plane [T, , as described below.

Considering that all radar data come from somewhere
on the radar planey, =0, the equation (1) is converted

such that

u %
v|=H|z, &)
1

where H is the 3x3 homography matrix. By estimating H,
the transformation between the radar plane 1, and the

image plane [T, is determined without solving R, t, and

A.
We use the least squared estimation using more than
four data sets of (u,v) and (x,,z,) for estimating H.

2.2. Determination of Corresponding Data Sets

Generally, a MMW radar has an azimuth/elevation
beam width of more than several degrees, which may
result from its antenna directivity. It causes low
directional resolution of the radar. Therefore,
determining accurate reflection positions is a difficult
work. However, we can expect the beam center has
maximum amplitude; that is, an object in the crossing
point of the radar plane encounters maximum reflection
intensity.

As shown in Figure 3, we observe radar reflections
and acquire frame data while moving a small corner
reflector up and down so that it crosses the radar plane.
The frame data contain reflections not only from the
reflector but also from the environment. For determining
the reflector's reflection in each acquired frame, a signal
with maximum intensity is extracted (its radial distance
r and angle @ are also recorded); thereby we obtain an
intensity sequence. With the intensity sequence, we
detect local intensity peaks for deciding crossing points
of the radar plane. Corresponding radii and angles to the
intensity peaks are converted into Cartesian coordinates
by x, =rcos@ and z, =rsinf.

The image sequence is acquired simultaneously by the
camera. We extract image frames which correspond to
intensity peaks. Then, the reflector's position (u,v) on
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Figure 3. Decision process for the radar plane
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each image frame is estimated by a template-matching
algorithm. Thereby we obtain the data sets that denote
positions on the image plane and the radar plane in the
equation (2).

3. Obstacle Detection by Radar

We use the radar in order to detect an obstacle and its
rough position that contributes to the motion
segmentation technique described in Section 4. In this
section, a simple obstacle detection method is presented.
We also explain the image region resulting from an
obstacle’s position detected by the radar.

3.1. Radar Data Segmentation

As mentioned in Section 2, the radar outputs (r, 8, s)

along with reflection intensity for every reflection. We
simply segment the radar data into clusters using a
nearest neighbor algorithm for detecting obstacles.

Data in each radar frame are sparse and spread on the
radar plane. They include a lot of errors caused by
diffractions, multiple reflections, and Doppler shift
calculation failures. For reducing influences of such
errors, we first eliminate data which has small reflection
intensity. Then we segment the remaining data into
clusters by sequentially connecting two data points which
have similar (,0,s)using pre-defined thresholds for 7,

6 and s. Finally, isolated data are eliminated again.

3.2. Projection of Radar Data

As shown in Figure 4, we select data in a cluster, and
project every data position (x,, z ) (converted from r,0)

into the image plane using the homography described in
Section 2. The radar and the camera are mounted at the
front of the vehicle above and below (See Figure 5). In
this case, projected points in the image stand in a nearly
horizontal line as shown in Figure 4. Then we draw a
rectangle enclosing all projected points. The size of the
rectangle is decided as follows; the right border is at 50
pixels to the right of the right-most point; the left border
is at 50 pixels to the left of the left-most point; the height
is decided by a value which is inversely proportion to the
distance r.

We treat the image area enclosed by the rectangle as a
candidate region where an obstacle would exist.
Although the position and the size of the rectangle are
determined roughly and adequately, the region plays an
important role for detecting the correct obstacle’s
boundaries in the image, as described in the following
section.

4. Motion Segmentation on Image Sequence

decided region
'

segmentation result

prgjection Q: )

MMW radar image

Figure 4. Decision of image region

For detecting the obstacle’s boundaries in the image,
we apply a motion segmentation technique based on
feature tracking. The technique is well known in
computer vision domain as ‘subspace factorization’. In
this section, we roughly describe the motion subspace
theorem which is a fundamental of subspace factorization.
Then we present details of a motion segmentation
process for detecting boundaries.

4.1. Motion Subspace Theorem

Let N be a number of feature points which lie in an
object. We track the feature points over M images. Let
(%> V,) D€ the image coordinates of the o -th feature

point in the x-th frame. All of the image coordinates are
stacked vertically into a 2M-dimensional vector in the
form as follows.
Pa =(x1a Na X0 Vg™ yMa)T’ (3)

The motion of the ¢ -th point is represented by a single
point p_in a 2M-dimensional space: that is, P,
represents a track of the « -th feature point over M
images.

If we assumed that the motion is observed by an
affine camera, p, has the form [8]

P, =mg+a,m, +b,m,+c,m,, )
where (a,,b,,c,) are the object coordinates of the ¢ th
points, and (m,,m,,m,,m,) are the 2M-dimensional
vectors composed by the intrinsic parameters of the
camera and the geometric relationship between the image

and the object coordinates. The equation (4) represents
that the N tracks {p_} belong to the 4-dimensional linear

subspace, the so-called ‘motion subspace’, spanned by
the vectors (my,m;,m,,m,) . In fact, the tracks P}

belong to the 3-dimensional motion subspace spanned by
the vectors {m,,m,,m,}, because the vector m, can be

chosen arbitrarily as the origin of the object coordinates.
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The 3-dimensional subspace is formed by 3 bases of the
subspace; we can estimate the 3 bases using more than
three tracks of the feature points (We do not have to
estimate a,,b,,c,,m;,m,,m, ). Once the subspace is

estimated, we can select the tracks that belong to the
subspace (i.e. the object) by evaluating residuals of
individual tracks with respect to the subspace.

A motion segmentation algorithm based on the
equation (4) had been presented in [8] first. Since then,
various extensions have been proposed for robustness
and reduction of computational cost (e.g. [9] [10] [11]).
These methods are basically designed for segmenting
multiple objects in an image sequence. In contrast, our
approach is rather simple.

In order to estimate a motion subspace of a single
moving obstacle, we need to select three tracks of the
feature points exactly on the obstacle. In general,
however, it is difficult to do it from an entire image
sequence without any clues. In our case, the radar helps
us to detect obstacle’s rough position. If we know the
image region where the obstacle exists, it is much easier
to select the three tracks for estimating the 3-dimensional
subspace. For example, we can select three tracks which
drop in the region (i.e. the ends of the tracks exist in the
region). However, as mentioned in Section 3, the
candidate region is decided roughly. There are outliers
when we randomly select such three tracks from the
candidate region. Therefore we use LMedS as a robust
estimator, as described in the next subsection.

On the other hand, tracks of moving obstacles
observed by a moving camera are, in general, not
represented by the equation (4), because it cannot be
assumed that motions are observed by a camera modeled
by an affine projection. For example, in the case of
background motion observed by a moving camera, the
distances between individual 3-D points on the
background and the optical center of the camera are
generally distributed in a wide range. In such a case, the
camera should be modeled by the perspective projection.
Limited on a moving obstacle, however, the distances are
distributed in a relatively small range. In this case, the
camera can be modeled by an affine projection; i.e. the
tracks of the obstacle are approximately represented by
(4). Therefore we can expect that the motion
segmentation technique based on the linear motion
subspace works effectively.

4.2. Motion Segmentation and Boundary

Detection

Details of the method for estimating the boundaries of
the obstacle detected by the radar are described in this
subsection. We estimate the motion subspace and the
boundaries by the following steps.

1)  We extract feature points at each frame. Then

2)

3)
4

5)

6)

the points are tracked over five frames and their
image coordinates in every frame are preserved.
For extracting and tracking feature points, we use
the KLT tracker in OpenCV Library available
from [14]. Note that tracking should be done
before the radar detects obstacles. That is, we
immediately use preserved tracks (over just five
frames) when an obstacle is detected by the radar.
After deciding the candidate region described
in Section 3, we take the preserved tracks and
select a set of tracks which drop in the region.
Before that, tracks which have no motion are
eliminated because we are interested only in the
moving obstacle. In addition, such tracks often
engender errors in estimation of a subspace in
Step 4) and 6). For each track, we calculate the
Euclid distance between two coordinates on the
beginning and the end of the track. If the distance
is smaller than 7 [pix] the track is eliminated.
Three tracks are randomly selected from the set.
A subspace is fitted to the selected three tracks
in the following process.
Let (p,,p,,p,), (1<a,b,c<N,azb+c) be the

selected three tracks that represent 3 points in the
2M-dimensional space (M=5 in this case). Also,
let p, be the center of the selected three tracks in

the space. All tracks in the set are shifted as
follows.

b=, ~Po) ®)
The 2M ><2‘=1:/I moment matrix M is calculated by
M=_Zb(13,-ﬂf>. )
We compu;:li:s eigenvalues 4 >4, >---> 4, and

corresponding eigenvectors u,,u,,--,u,,, - The 3

vectors (u u,) are an orthonormal basis of a

U,
3-dimensional subspace which is a candidate for
the motion subspace of the moving obstacle
detected by the radar.

We calculate individual residuals g’ of the

tracks in the set with respect to the subspace fitted
in Step 4) as follows.

2M

8i2=2([—)iTuj)25 iia,b,c (7)
Jj=4

Then the median

preserved. We use the median so as to evaluate the
selected three tracks (p,,p,,p,) - Note that we

2 . 2 2
Eabio) =median(g;”) 1S

assume that more than 50% of the tracks in the set
belong to the obstacle. If all of p ,p,,p, are

exactly on the obstacle, the median has a small
value, otherwise a large value.
By repeating Step 3) ~ 5) a number of times
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mentioned below, we obtain n values {€q bc)z} as

a collection of medians. Then we take the smallest in)tenSitY
value from the {g,, °} and the corresponding 2

three tracks. We decide that the 3 eigenvectors 180
(u,,u,,u,) corresponding to the three tracks with

the smallest ¢, bc)2 span the motion subspace for 160

the moving obstacle. 140 |
7)  After that, we evaluate individual residuals of

all tracks in the image sequence (for five frames) 120

with respect to the subspace estimated in Step 6).

Every track with smaller residual than a pre- 100

defined threshold is selected. 250300 350 400 450 PR

Finally, we extract the feature points on the end

of the selected tracks. The obstacle’s boundaries

are decided by drawing a rectangle which encloses 2[m]

all of the extracted feature points.

Figure 6. Intensity sequence

For estimating the correct subspace resulting from the
obstacle’s motion, we need to repeat Step 3) ~ 5) a
sufficient number of times. We decide the repeated
number 7 by the following criteria.

We decide the repeated number n so that the correct
three tracks of the obstacle are selected at least one time 3
by a 99.99% probability. The number of times # can be
calculated as follows. o

(ch’c’] <0.0001, ®

N3

x[m]
Figure 7. Calibration points (radar)

where N is the number of tracks in the set mentioned in vipix]
Step 2), and p, is the number of the tracks of the 4sor

400

obstacle.
As mentioned in Step 5), we assume that more than
50% of the tracks in the set exist on the obstacle. This o % T % e
assumption is reasonable because the set of tracks are = ” -
decided from the candidate region. In experiments, the
number of tracks (feature points) in the set is no more
than 100. However the number of repeated times is about
70 which enable real-time processing for estimating
obstacle boundaries. 0 T00 200 300 300 500 GO0,
Note that the candidate region described in Section 3 e
does not need to completely enclose the correct
obstacle’s region in the image. Our method works even

350

200F
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100+
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Figure 8. Calibration points (image)

when the radar observes a part of reflections from the :I;;KJ ' ' : T0m] %
obstacle because, as mentioned in Step 6), we extract all P §8H§H e
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Figure 9. Calibration result

Figure 5. Car-mounted sensors
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(b) Candidate image region

(c) Detected boundaries

Figure 10. Obstacle Detection

Figure 11. Radar data segmentation
feature points that belong to the motion subspace.

5. Experimental Results

In this section, we show a calibration result and
obstacle detection results using real radar/image frame
sequences observed in urban areas.

We mounted the radar and the camera at the front of
the vehicle as shown in Figure 5. We used a line-
scanning MMW radar which was offered by a radar
manufacturer for experimental uses. The detection range
was 50[m] and the scanning angle was 20.9[deg]
horizontally. The radial and lateral resolution were
0.1[m] and 0.55[deg], respectively. Its frame rate was 10
[fps]. The color camera was SONY DFW V500 with
640x480[pix] and 30 [fps].

5.1. Calibration

Figure 6 shows an example of the intensity sequence
described in Section 2. The 46 data sets, which represent
positions on the radar plane and the image plane, are
shown in Figure 7 and Figure 8, respectively. We

estimated the homography matrix H using these data sets.

Figure 9 shows transformed positions (the radius
between 10-50m and the angle between -10-10 degree)
on the radar plane to the image plane using H.

Figure 6 indicates that the radar fails to acquire the
correct reflection intensity of the reflector at some frames,
which represents the lack of stability of radar observation.
Extracted points on both planes are influenced by this
lack of stability. However, the calibration result in Figure
9 reasonably indicates the actual sensor arrangement, i.e.
the radar is located above the camera, and scanning
directions of the radar are nearly parallel to the y axis

of the image.

5.2. Moving Obstacle Detection

Figure 10 and 11 show an acquired image and a radar
frame in an urban area, respectively. In the scene, a
motorcycle was moving from the left to the center in the
front area of the vehicle (it moved in a relative range
from 7 [m] to 8[m] in the scene).

In Figure 10 (a), we show the feature points tracked
over the last five frames. Only the latest image
coordinates are shown by the green points. Two vertical
lines on the left and right parts of the image frame
indicate the right-most and the left-most limits of the
radar’s scanning angle, respectively. (We estimated the
limits from the calibration result.)

The corresponding radar frame is shown in Figure 11.
As a result of the obstacle detection method described in
Section 3, two obstacles (a motorcycle about 8[m] away
from the vehicle and a car about 20[m] away) are
detected by the radar.

Figure 10 (b) shows the estimated candidate region
that corresponds to the motorcycle. The region is shown
by the rectangle. The tracks that drop in the region are
shown by the small circles. After eliminating motionless
tracks, 62 feature points remained.

Figure 10 (c) shows the result of the motion
segmentation method described in Section 4. The
detected boundaries of the motorcycle are shown by a
rectangle. The three ‘x’ points indicate the three tracks
(note that only the last image coordinates are shown) that
have the smallest median value; that is, the three tracks
determine the subspace of the motion. The number of the
feature points on the motorcycle is 34 (indicated by small
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(a) 90th frame (b) 99th frame

(d) 117th frame

(c) 108th frame

Figure 12. Detected boundaries on image sequence

circles in the rectangle).

Figure 10 (c) indicates the validity of the proposed
method. In this case, the proposed method using
subspace factorization works perfectly. In Figure 10 (b),
we can see that several feature points out of an obstacle’s
area exist in the candidate region. However, all outliers
are eliminated and the feature points exactly on the
obstacle remain in Figure 10 (c).

Figure 12 shows an image sequence of the same scene
as Figure 10. At some frames, we failed to detect some
feature points around the driver’s head; heights of the
rectangles at individual frames are different. However,
we can see that the proposed method satisfactorily caught
the obstacle’s boundaries.

Figure 13 shows an image sequence of a dusky scene.
In this case, the vehicle turned to the right after a car
passes (the car was in a relative range from 8[m] to
10[m]). In spite of the darkness, feature points are
extracted well and we could detect boundaries of the car
satisfactorily.

For evaluating the proposed method, we count a
number of image frames where valid boundaries are
detected.

We firstly select consecutive image frames in which a
moving obstacle is observed in an image area where the
radar can detect it (The area is indicated by the two
vertical lines in Figure 10 (a)). We refer to the selected
frame as the ‘base frame’. The base frame is decided by
the following steps.

(1) We select image frames where a target (the
motorcycle in the case of Figure 12) is observed
in the image area. For each frame, we manually
set a rectangle which just encloses the target in
the current frame. We refer to this rectangle as
the ‘base rectangle’ (See Figure 14).

(2) For each frame, the feature points in the 5th
frame before are tracked to the current frames,
and then we remove every track which has a
small motion distance (less than 7 [pix])

.between the coordinates in the first frame and in
the last. If more than 10 tracks dropped in the
base rectangle, we select the image frame.

In the case of the scene Figure 12, 49 consecutive

frames (for about 1.6 [sec]) were selected as the base
frames. In the case of Figure 13, 80 frames (for about
2.6[sec]) were selected.

We need a valid result of the obstacle detection by the
radar in order to succeed in the moving obstacle
segmentation. We check the candidate regions estimated
from the obstacle’s positions detected by the radar. As
shown in Figure 14, we compare the candidate region
(rectangle) with the base rectangle. If the overlapped
area occupies more than 50% of the base rectangle, we
conclude that we have succeeded in estimation of the
candidate region; we do not care how big the candidate
region is. Note that the frame rate of the radar was
10[fps] (the camera had 30[fps]); therefore, we use the
candidate region estimated by radar frames toward the
consecutive three image frames.

Finally we evaluate the proposed method by counting
the number of frames where detection of boundaries has
succeeded. For evaluation, the motion segmentation
method is done for the frames where the candidate region
detection has succeeded. We decide the success in the
moving obstacle segmentation by the following criteria.

(1) The feature points that construct the obstacle’s

boundaries (See Section 4.2, Step 6) are
composed of only points exactly on the target in
the image.

(2) The overlapped area in Figure 15 occupies more

than 65% of the base rectangle.

We expect the estimated boundaries should be fully
enclosed by the base rectangle. We carefully check both
the boundaries and the feature points within the
boundaries. The area rate in (2) is decided by
considering that the height and width of the boundaries
should be more than 80% of the length of the base
rectangle.

Table.1 shows evaluation results for the two scenes
shown by Figure 12 and 13. As mentioned in Section 3,
radar data contains a lot of errors. In addition, slanted or
small obstacles might be missed because of the weak
reflections. These errors and misses affect the obstacle
detection by the radar, and we failed at some frames in
detection of the valid candidate as shown in Table 1(b).
On the other hand, motion segmentation succeeded in
many frames. In the case of scene 1 (Figure 12), correct
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(a) 120th frame (b) 129th frame

(c) 138th frame

(d) 147th frame

Figure 13. Detected boundaries on image sequence (dusky scene)
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Figure 14. Overlapped area for evaluating
candidate region.
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Boundaries estimated
by proposed method
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Figure 15. Overlapped area for evaluating
obstacle boundaries.

(a)Number of | (b)Number of image frames where | (c)Number of image frames where
base frames estimation of valid candidate region | boundary detection by the proposed
is succeeded. method is succeeded (rate for (b)).
Scene 1 49 39 37(97.44 %)
(Figurell)
Scene 2 80 60 50(83.33 %)
(Figure12)

Table 1. Evaluation results

boundaries are estimated at 97% for the number of
frames that succeeded in candidate detection. The rate is
smaller in the case of scene 2 (Figure 13). This is mainly
because darkness in the scene and highlighted feature
points cause incorrect feature tracking. However,
boundary detection is succeeded in more than 80% of
frames after obstacle detection by the radar.

Figure 16 shows examples of boundary detection by

the proposed method for a pedestrian and a baby carriage.

The intervals among the left, the middle and the right
column are 9 frames (0.3[sec]). In figure 16(a), a
pedestrian walked across from the left to the right on the
scene (in a range from 4[m] to 6[m]). In Figure 16(b) a
pedestrian with a baby carriage walked across from the
left to the right (in a range about 5[m]). We adjusted
sensitivity of the radar outputs because radar reflections
from human body and cloth material are very weak.
Detection of the candidate region is missed especially in
the case of a pedestrian when the radar has low
sensitivity.

It is important to note that estimation of the correct

boundaries of a pedestrian by the subspace theorem is
difficult, because the theorem described in Section 4 is
valid only for rigid objects. The human body is not rigid
and changes its shape while it walks on. In the case of
Figure 15, we hardly detect the whole of the pedestrian’s
body. However, in most of frames, we could estimate the
region of the center of the body, and extract the correct
feature points that belong to the pedestrian.

Through the experiments, we eliminate the tracked
feature points that have small motion (less than 7 [pix]
per 5 frames). In the case of Figure 15, a pedestrian
moved 30 [pix] per 5 frames at a range of 5[m]. The
value 7 [pix] is small enough to detect a pedestrian which
moves across in front of the vehicle at a range in real
scene.

In the experiments, a PC with a Pentium IV 3GHz
was used. The detection processes described in Section 3
and 4 were implemented in C-language programs. We
use OpenCV libraries [14] for not only tracking feature
points but also calculating matrixes and eigenvectors
through the experiments. According to the experiment,
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(a). Example of detection results for a pedestrian.

(b). Example of detection results for a baby carriage.

Figure 16. Examples of detection results.

the maximum computational time was 0.15 [sec/frame]
for detecting boundaries of an obstacle (including
tracking feature points over five frames). If we do not
use the radar, and if we detect obstacles using only image
sequence by applying the subspace factorization
technique without any clues, the computational time is
more than a few seconds without satisfactorily results.
Thereby radar and the subspace factorization technique
for image sequence are a proper choice for detecting
obstacles in respect to robustness and computational
efficiency.

7. Summary

We proposed a calibration method for sensor fusion
of MMW radar and camera, and an obstacle detection
method using the subspace factorization technique. For
detecting boundaries of an obstacle, we used the radar
for deciding the obstacle’s rough position in the image
sequence. We showed the validity of the proposed
method through the experiments.

Through this work, we confirm that the motion
observed by a car-mounted camera can be approximately
treated as a motion observed by an affine camera. This
means that several extensions of the subspace separation
technique can be applied for advanced driver assistance
functions. If moving obstacles are segmented from the
background perfectly, we can analyze and recognize the
obstacles using various recognition algorithms.

Our method is mainly designed for detecting the

obstacles that move to block the course of the vehicle.
For such an objective, the proposed method seems to
work very well. However, motion segmentation results
depend not only on obstacle’s motion but motion of the
background. Therefore we will analyze the motion
subspace theorem and evaluate segmentation results
considering more various movements in the background
in real scenes, along with results for non-rigid objects
such as a human body.

It is also important to detect obstacles which lie in the
background such as walls, poles, guard rails, and so on.
For detecting these obstacles, a segmentation method
based on a distance measure is effective. Accordingly, in
the future work, we will research a method for applying
the proposed method to stereo vision.
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