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Abstract: This paper presents the Probabilistic Vehicle Routing and scheduling Problem with Time Windows (VRPTW-
P) model which takes into account the uncertainty of travel times. Probe vehicle data of travel times were obtained from
actual operation of pickup-delivery truck in Osaka-Kobe area. The optimal solution of VRPTW-P resulted in
considerably reducing total cost, travel times and CO,, NOx and SPM emissions compared with expected average case
based on the real operation. This is attributed to better routing of VRPTW-P to choose more reliable roads. Therefore,
VRPTW-P can contribute to establish efficient and environmentally friendly delivery systems in urban area.
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1. Introduction

Urban freight transport is faced with difficult
problems of traffic congestion and negative
environmental impacts by heavy freight vehicles. As well
reducing logistics costs is a key issue for shippers in the
competitive global market. Although these issues should
be promptly solved, there is difficulty to take drastic
measures of building new roads.

Some researchers [1][2][3][4] proposed city logistics
measures to cope with these complicated freight
problems in urban areas including: (a)Application of
ITS (Intelligent Transport Systems) or advanced
information systems, (b)Co-operative freight transport
systems, (c)Public logistics terminals, (d)Load factor
controls, (d)Underground freight transport systems.
Among these measures the application of ITS to vehicle
routing and scheduling planning is most promising to
establish efficient and environmentally friendly logistics
systems. Taniguchi et al. [5] pointed out that
probabilistic vehicle routing and scheduling with time
windows incorporating the uncertainty of travel times
can reduce total costs as well as negative environmental
impacts. ITS allows us to obtain change of link travel
times on road network. The historical travel time data
can be used for probabilistic vehicle routing and
scheduling.

Laporte et al. [6] and Malandraki and Daskin [7]
investigated probabilistic vehicle routing and scheduling
with time windows. However, these papers do not
explicitly take into account real change of travel times on
road network.

Recently probe vehicle techniques have been
available for measuring current position of vehicles,
travel times and travel routes using in-vehicle sensors
and GPS (Global Positioning Systems). Prove vehicle
techniques allow us to obtain accurate travel time data,
since measurement devices are installed in real running
vehicles.

This study investigates probe vehicle data on link
travel times. We installed sensors and recording systems
in an urban pickup-delivery truck in Osaka-Kobe area in
Japan and examined following two points using probe
vehicle data:

(a) Method for obtaining the distribution of travel
time on real urban roads

(b) Comparison between optimal probabilistic
vehicle routing and scheduling based on
probe vehicle data and real operation of
vehicle routing and scheduling.

The study uses Probabilistic Vehicle Routing and
scheduling Problems with Time Windows (VRPTW-P)
model which will be formulated later. It also analyses the
possibility to establish efficient and environmentally
friendly logistics systems in urban areas.

2. Estimating the distribution of travel times
using probe vehicle data

The measurement system shown in Figure 1 was
installed in a small pickup-delivery truck (load capacity
= 2 ton) which delivers electronic products to retail
shops in Osaka-Kobe area. The measurement device can
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record the current position of a vehicle at the interval of
1 second receiving GPS signals from satellites. Data
were recorded in a memory card and collected every
month during 7 months (25" July 2003 — 28 February
2004). This study used a single pickup-delivery truck and
the data were taken for 151 days.

Measurement,
(device |

| Memory card |

T —.
p"

=
|

Figure 1 Measurement system

We formed a road network for the analysis of vehicle
routing and scheduling based on the actual running path
of probe vehicle. Figure 2 indicates the road network in
Osaka-Kobe area. The road network only represents
trunk roads and urban streets which are associated with
visiting customers in this area. This road network
contains 292 links and 89 nodes, where one depot and 37
customer nodes are located. A pickup-delivery truck
leaves the depot to deliver goods to some of 37
customers and returns to the same depot.

The road network contains trunk roads of National
Highways Route 2 and 43, which run in east-west
direction in Osaka-Kobe area as well as urban streets

with lower traffic capacity, which mainly run in north-
south direction. These roads within the network were
classified into 7 groups based on the class of roads and
area as shown in Figure 3. The historical data of link
travel times have been accumulated at each road group to
analyse the distribution.

Figure 4 illustrates the frequency of probe vehicle
running within the network during 7 months. There were
only 9 links where the probe vehicle did not run and 75
links where the probe vehicle ran 1- 20 times.
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Figure 4 Frequency of probe vehicle running

Since the VRPTW-P model requires the distribution
of travel times, we analysed travel times data by the
probe vehicle in each road group. Figure 5 shows an
example of travel time distribution at link 161. The travel
time distribution looks like a triangular shape.

Figure 2 Road network in Osaka-Kobe area
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Figure 5 An example of travel time distribution (Link
161 (see Figure 2))

Analysing travel time data of each link gave the
maximum, minimum and average value of travel times
for each road group. Figure 6 shows the relationship of
these values and the link distance for road group 2. A
linear regression analysis was performed and the
maximum, minimum and average travel speeds were
identified from the inclination of the approximated line.

Table 1 shows the maximum, minimum and average
travel speeds and their fluctuation for each road group.
This table indicates that trunk roads in the road group 1,
2 and 4 account for higher average travel speed and
lower fluctuation. It means that these roads are relatively
reliable in terms of travel speed. In contrast roads in the
road group 5, 6 and 7 account for lower average travel
speed and higher fluctuation.

Table 1 Maximum, minimum and average travel speeds
and their fluctuation

Travel speeds (km/h) 3
Number - — Fluctuation
Road Group Maximum| Average |Minimum
of Lane | ((@)-(c))/(b)
(@) (b) ©
1 |Route 43 8 50.3 25.2 12.0 1.52
2 [Route 2 4 442 19.4 7.8 1.87
g [Bast-west g 240| 129 6.8 1.34
street
4 |Bay areal 2 26.0 17.0 12.2 0.81
5 |Bay area2 2 39.0 12.2 5.9 2.71
g (Paliaal 476 162 6.7 252
streets 1
g [ToEdigeuli 313 11.6 44 232
streets 2

A triangular shape distribution of travel times was
used for VRPTW-P model. It can be produced as
follows: (a) determine the maximum, minimum and
average travel times using the relationship of travel time
and link distance as shown in Figure 6, (b) form a
triangular shape distribution to let the area of triangle be
1. Figure 5 shows an example of the estimated triangular
shape distribution for link 161. Because of the limited
number of data, we used whole data of the link during the
measurement period to produce travel time distribution.
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If more data are available, it will be better to reflect the
hour of day and the traffic direction on link.

3. Probabilistic
scheduling model

vehicle routing and

This study adopted Probabilistic Vehicle Routing and
scheduling Problems with Time Windows (VRPTW-P)
model [5].

The model for VRPTW-P is defined as follows. A
depot and a number of customers are defined for each
freight carrier. A fleet of identical vehicles collects goods
from customers and deliver them to the depot or deliver
goods to customers from the depot. For each customer a
designated time window, specifying the desired time
period to be visited is also specified. For example, in the
case of collecting goods, vehicles depart from the depot
and visit a subset of customers for picking up goods in
sequence and return to the depot to unload them. A
vehicle is allowed to make multiple trips per day. Each
customer must be assigned to exactly one route of a
vehicle and all the goods from each customer must be
loaded on the vehicle at the same time. The total weight
of the goods in a route must not exceed the capacity of
the vehicle. This problem is used to determine the
optimal assignment of vehicles to customers and the
departure time as well as the order of visiting customers
for a freight carrier. VRPTW-P explicitly incorporates
the distribution of travel times for identifying the optimal
routes and departure times of vehicles.

The VRPTW-P model minimises the total cost of
distributing goods with truck capacity and designated
time constraints. The total cost is composed of three
components; (a) fixed cost of vehicles, (b) vehicle
operating cost that is proportional to time travelled and
spent waiting at customers, (c) delay penalty for
designated pickup/delivery time at customers. The model
can be formulated as follows.

Minimise

C(to’x) = icf,l -6, (x,) +zm:E[Cz,1 (t,0-X, )]+
=1 I=1

iE [Cp,z (110 ,XI)] 1)
I=1

where,

E lct,l ()05, )J
N

= t,[Z{T(ﬁ,n(i)’n(i)’n(i+1))+tc,n(i+1) } )
i=0

ElC,, (t0.x)]

N/
= Z f pl,n(i) (tl‘o ’t’xl ){Cd,n(i) (t)+ce,n(i) (t)}dt
i=0

3
Subject to
) )
YN, =N (5)
I=1
3 D(n(@) = W, (x,) ©)
n(i) € x;
W (x) < W, (7}
[, <1, (8)
b 51, ©)
where
fo =t +
N,

> AT s DG+ D) +1,,4 } 010)

i=0
C (to N X) : total cost (yen)
t,: departure time vector for all vehicles at the depot
7 ={t1,0 1 =1, m }

X : assignment and order of visiting customers for all
vehicles

X={x|l=1, m)
X, : assignment and order of visiting customers for
vehicle /
x, ={n@1i=1LN,}
n(i) : node number of i th customer visited by a

vehicle

d(j) : number of depot (= 0)
N, : total number of customers visited by vehicle /

1, : total number of d(j) in X,
m : maximum number of vehicles available

Crit fixed cost for vehicle / (yen /vehicle)
0, (x,) : = 1; if vehicle [ is used, = 0; otherwise

C,,(t,4,X,) : operating cost for vehicle / (yen)
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C,., (t,,X,) : penalty cost for vehicle [ (yen)

C, ; : operating cost per minute for vehicle [ (yen /min)

I, i : departure time of vehicle / at customer 7(7)

T () ,»n(@),n(i +1)) : average travel time of vehicle
[ between customer 7(i) and n(i +1) at time
£y onti

l, - loading/unloading time at customer n(i)

Diniy (t.0-1,X,) : probability in which a vehicle that
departs the depots at time {,  arrives at customer
n(i) attime ¢

Canti) (#) : delay penalty cost per minute at customer
n(i) (yen/min)

Conti) (¢) : early arrival penalty cost per minute at

customer 7(i) (yen/min)

N : total number of customers

D(n(i)) : demand of customer n(i) (kg)

1) :lastarrival time of vehicle / at the depot
t, : starting of possible operation time of trucks
t,: end of possible operation time of trucks

W, (x,) : load of vehicle / (kg)

W, : capacity of vehicle [ (kg).

The problem specified by equations (1) — (10) involves
determining the variable X , that is, the assignment of
vehicles and the visiting order of customers and the

variable £, , the departure time of vehicles from the depot.

Note, that 7(0) and n(N, +1) represent the depot in

equations (2) and (3).
Figure 7 shows the penalty for vehicle delay and early
arrivals at customers. The time period (2, —t,,) of

the penalty function defines the width of the soft time
window in which vehicles are requested to arrive at
customers. If a vehicle arrives at a customer earlier than

t,» it must wait until the start of the designated time

window and a cost is incurred during waiting. If a vehicle
is delayed, it must pay a penalty proportional to the

amount of time it was delayed. This type of penalty is
typically observed in goods distribution to shops and
supermarkets in urban areas. Multiplying the penalty
function and the probability of arrival time as shown in
Figure 7 can identify the penalty of early arrivals and
delay at customers for the probabilistic model.

The problem described herewith is a NP-hard
combinatorial optimisation problem. It requires heuristic
methods to efficiently obtain a good solution. The model
described in this paper uses a Genetic Algorithms (GA)
to solve the VRPTW-P. GA was selected because it is a
heuristic procedure that can simultaneously determine the
departure time and the assignment of vehicles as well as
the visiting order of customers.

The parameters of GA were determined for several
test cases as follows:

Number of individuals = 300

Number of generations = 1,000

Number of elite individuals = 30

Crossover rate = 0.8

Mutation rate = 0.02
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Figure 7 Delay and early arrival penalty
4. Case study in Osaka-Kobe area

4.1. Overview

This study measured precise movements of a pickup-
delivery truck using the measurement device with GPS.
The truck visited over 20 customers for delivering
electronic products per day in Osaka-Kobe area and the
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total distance travelled was 40-50 km per day. It used
wide range of roads including trunk roads and urban
streets.

The best approach to show the effectiveness of
VRPTW-P is to compare total costs of the optimal
solution of VRPTW-P with those of real operation.
However, because of lack of link travel time information
except links where a probe vehicle runs, it is difficult to
identify total costs and CO,, NOx and SPM (Suspended
Particle Materials) emissions of optimal solution of
VRPTW-P.

Therefore, this paper compares the optimal solution of
VRPTW-P using historical link travel time data given by
a probe vehicle with expected average case based on the
actual operation of the pickup-delivery truck in terms of
total costs and CO,, NOx and SPM (Suspended Particle
Materials) emissions.

4.2. Delivery

The case study evaluates delivery activities on two
days of 8" and 9™ December 2003. The pickup-delivery
truck visited 21 customers on 8" December and 24
customers on 9™ December, 16 customers of which were
same. Figures 8 and 9 show the actual routing of the
pickup-delivery truck. A single two-ton truck started the
depot at 10 a.m. and returned to the same depot after
delivering goods to customers.

4.3. Assumptions for VRPTW-P

There are some assumptions for calculating the
optimal solution of VRPTW-P:

(a) A single two-ton truck is allowed to be used

(b) Each customer sets soft time window of 3 hours
(1.5 hours before and after the actual arrival at
customer)

(c) The configuration of link travel time distribution
during delivery is same for a specific link.

4.4. Identifying the optimal solution

The VRPTW-P model identified the optimal visiting
order of customers and departure time of depot for two
days of 8" and 9" December. It also determined the
shortest path between customers using the average travel
times. Here we assume expected average case based on
the real operation (Case (EA)): (a) A pickup-delivery
truck follows the same roads of real operation, but (b) it
runs at the estimated average travel time by the
regression model as shown in Figure 6 and Table 1.Thus
expected average costs for Case (EA) can be calculated.

In this research, the delay and early arrival penalties do
not represent real penalties of that day, but expectations
of penalties in each routing with assumed travel time
distributions. Optimal solutions are identified for 2 cases;
Case (a) the unit delay penalty is set equal to the unit
early arrival penalty and Case (b) the unit delay penalty is
set 5 times larger than the unit early arrival penalty.
Results showed that the same visiting order of customers
and departure time are determined for optimal solution in
both cases. Then results Case (a) are discussed as follows.

Table 2 shows the comparison of costs for Case (EA)
and optimal solution of VRPTW-P. The table indicates
that the total cost of the optimal solution of VRPTW-P
was reduced by 13.4-24.7% compared with that of Case
(EA). In particular, the operation cost of the optimal
solution of VRPTW-P was reduced by 8.5-12.8%
compared with Case (EA). This is attributed to choosing
better visiting order of customers and roads used.

The delay penalty for the optimal solution of VRPTW-
P was also greatly decreased to zero for both two days.
The early arrival penalty was slightly increased for the
optimal solution of VRPTW-P. The results represent the
characteristics of VRPTW-P model that tends to arrive
earlier avoiding any delay at customers considering the
uncertainty of travel times. Therefore, VRPTW-P can
contribute to provide better service to customers by
decreasing an opportunity to arrive late at customers.

Table 2(a) Comparison of costs (Case (a))

8" December

Case Optimal

(EA) solution Cl(ltz;n)ge

(Yen) (Yen) 7
Fixed cost 10,417 10,417 0.0
Operation cost 16,488 14,383 -12.8
Delay penalty 7,236 0| -100.0
Early arrival 0 906 .
penalty
Total cost 34,141 25,706 -24.7
Table 2(b) Comparison of costs (Case (a))

9™ December

Case Optimal

(EA) solution C}(l;n)ge

(Yen) (Yen) .
Fixed cost 10,417 10,417 0.0
Operation cost 16,575 15,172 -8.5
Delay penalty 4,039 0| -100.0
Early arrival
penalty 0 1,288 -
Total cost 31,031 26,877 -13.4
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Figure 9 Routing of Case (EA), same as actual routing of the pickup—delivery truck on 9" December

Figures 10 and 11 demonstrate the routing of optimal
solution of VRPTW-P. With the comparison of Case
(EA) in Figures 8 and 9, these figures indicate that the
optimal solution is likely to use trunk roads (Route 2 and
43) rather than urban streets. This is due to the
characteristics that the trunk roads are more reliable in
terms of travel times than urban streets.

Table 3 shows the visiting order of both Case (EA)
and the optimal solution of VRPTW-P. The visiting order
of customers for both cases is quite similar, because the
time windows of 3 hours at customers make it difficult to
largely change the visiting order of pickup-delivery truck.

Table 3 Visiting order of customers for real operation
and optimal solution of VRPTW-P

Date Visiting order of customers

Case 87,62,2,44,89,21,47,28,76,55,78,79,

g (EA) 36,15,38,80,39,42,41,31,65
Dec. | Optimal | 87,62,2,89,21,44,47,28,55,78,79,36,
solution | 15,38,42,41,39,80,76,31,65

Case 87,44,89,21,47,26,28,76,55,13,79,58,

9th (EA) 36,38,80,81,39,41,42,31,50,3,62,85
Dec. | Optimal | 87,62,44,89,21,47,28,76,55,79,36,13,
solution | 58,38,80,81,39,42,41,31,26,50,3,85
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Figure 10 Routing of optimal solution on 8" December
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Figure 11 Routing of M(v)'ptimal solution on 9 December

4.5. Negative environmental impacts

It is important to look into the improvement of negative
environmental impacts of VRPTW-P as well as cost
reduction. Figure 12 compares travel times of pickup-
delivery truck, CO,, NOx and SPM (Suspended Particle
Materials) emissions of the Case (EA) and the optimal
solution of VRPTW-P. The figure indicates that travel
times of pickup-delivery truck for the optimal solution of
VRPTW-P were reduced by 8.2-12.7% compared with
those of Case (EA). This reduction of travel times can
contribute to alleviate traffic congestion. The emissions
of CO,, NOx and SPM for the optimal solution of
VRPTW-P were also reduced by 4.3-10%, 3.5-10.7%, 3-
9%, respectively. Therefore, VRPTW-P can contribute
not only to decrease total costs but also to decrease
traffic congestion and negative environmental impacts.

@ 8-Dec Real

M 8-Dec Optimal
0 9-Dec Real
M 9-Dec Optimal

P R

o o o o

o S. © o
Emissions (g)

=3
=)

0.50

0.00
Travel times Cc02 NOx SPM

Figure 12 Environmental impacts
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5. Conclusions
The study derived following findings.

(a) It is possible to obtain accurate data of travel times
by analysing behaviour of probe vehicles of pickup-
delivery trucks that run in urban areas.

(b) A classifying method of travel times data for
appropriate road groups is useful for providing input
data of travel times distribution to the VRPTW-P
model.

(c) Total cost of the optimal solution of VRPTW-P was
reduced by 13.4-24.7% compared with that of the
expected average case based on the real operation of
pickup-delivery truck. In particular the operation
cost and the delay penalty were considerably
decreased due to better routing. The optimal route of
VRPTW-P was to choose more reliable trunk roads
in terms of travel times than urban streets.

(d) The VRPTW-P also resulted in reducing the travel
times and CO,, NOx and SPM emissions compared
with those of the expected average case based on the
real operation. Therefore, the VRPTW-P can
contribute to decrease traffic congestion and
negative environmental impacts.

Further investigations are needed about following points.

(a) It is necessary to combine travel times data by VICS
(Vehicle Information Communication Systems) with
prove vehicles to improve the accuracy of link travel
times distribution.

(b) Dynamic traffic simulation within road network is
needed to compare details of the real operation and
VRPTW-P.

(¢) In order to compare the cost and negative
environmental impacts of the optimal solution of
VRPTW-P with those of real operation, a test truck
running experiment will be required.
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