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Abstract In this study, we propose a trajectory

data-driven network representation method, specifically

leveraging directional statistics. This approach allows

us to extract major intersections and define links from

observed trajectories, thereby mitigating the reliance

on existing network data and map matching. We apply

Graph Convolutional Networks and Long-Short Term

Memory models to the trajectory data-driven network

representation, suggesting the potential for fast and ac-

curate traffic state prediction. The results imply sig-

nificant reduction in computational complexity while

demonstrating promising prediction accuracy. Our pro-

posed method offers a valuable approach for analyzing

and modeling transportation networks using real-world

trajectory data, providing insights into traffic patterns

and facilitating the exploration of more efficient traffic
management strategies.

Keywords Network Representation · Traffic state

prediction · Deep learning

1 Introduction

In transportation network analysis, the representation

of the network is a crucial and challenging problem.
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Depending on the purpose of the analysis, such as

national-level network design or identification of bot-

tlenecks in local narrow roads, the required spatial res-

olution varies significantly. Therefore, careful consider-

ation is needed regarding the resolution at which calcu-

lations should be performed for each analysis purpose.

The computational cost associated with network-based

calculations fluctuates rapidly with the number of links,

making it necessary to consider the feasibility of com-

putation when setting the resolution. However, there

are no clear rules or algorithms for appropriately repre-

senting networks for various purposes. Most studies ei-

ther use conceptual networks designed subjectively by

analysts or meticulously adjust network data obtained

from detailed networks made for navigation systems.

Decades ago, the lack of discussion on how to place

centroids and represent road network elements in traffic

assignment problems was noted, despite the significant

influence of these aspects on analytical outcomes [1].

Thereafter, techniques to simplify the network struc-

ture were proposed in the context of reducing the com-

putational burden of the traffic assignment problem[2]

[3] [4]. Even today, however, there are still few studies

focusing on network representation, making it an issue

that requires active engagement.

In recent years, with the rapid advancement of ob-

servational data, the trend in network data used for

analysis is changing. In particular, with the prolifera-

tion of vehicle trajectory data, the demand for network

data containing coordinate information is increasing.

Trajectory data, also known as network-free data, is

originally a time series of latitude and longitude, re-

quiring additional processing to associate it with a net-

work through techniques like map-matching. To asso-

ciate vehicle observational data with a network, it is

necessary for the network data to have positional co-
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ordinate information. However, network data based on

position coordinates, such as OpenStreetMap (OSM),

which accurately represents detailed connection struc-

tures including narrow roads, often results in a massive

number of nodes. For example, intersections or inter-

changes that provide route selection functionality are

often represented by numerous nodes, which is redun-

dant when considering wide-area network assignment

problems. In such situations, the adjustment work for

network data becomes increasingly burdensome in or-

der to fully utilize valuable observational data that has

become available in recent years.

Network representation methods that consider the

characteristics of trajectory data have the potential to

solve these problems. For example, network aggrega-

tion techniques based on trajectory data [5] [6] [7] ob-

jectively reconstruct networks based on actual obser-

vations, demonstrating their effectiveness, particularly

for accelerating computational processes for large-scale

networks. However, network aggregation currently re-

lies heavily on the connection structure of the input

network data and the accuracy of pre-executed map-

matching processes, posing significant challenges. Map-

matching is especially computationally intensive, and

frequent mismatches still occur in networks with par-

allel roads. To address these issues, the development

of new methodologies that reduce dependence on given

network data and map-matching processes is required.

To decrease reliance on given network data, it is

necessary to develop new methodologies for generating

network data based on observations. One such method

currently being developed is to estimate major intersec-

tions solely from trajectory data (Zhong et al., 2022).

This method can be considered purely observation-

based as it does not use any given network data. How-

ever, this approach assumes situations where there is

absolutely no information about spaces where roads

and intersections exist, such as in developing countries

where there is no existing map data. From a practical

standpoint, it is rational to adopt a strategy that does

not rely on the connection structure of the given net-

work data but leverages preliminary information such

as the location and shape of intersections.

In this study, we develop a methodology to generate

network data from trajectory data without using con-

nection information from given network data, assuming

situations where all intersection positions and degrees

can be obtained in advance from maps or other sources.

Specifically, we utilize the direction information and

arrival information between points in trajectory data

and develop major intersection extraction technology

and network generation technology based on directional

statistics. By generating networks from actually ob-

served trajectory data, metrics for each generated link,

such as average speed, can be calculated without the

need for additional map-matching processes. By repre-

senting links based on actual arrival information, errors

in link connection information and directions, which are

common in conventional network data, can be avoided.

The proposed method allows for adjusting the network

resolution by adjusting threshold values, making it easy

to create a network with a resolution suitable for the

purpose and accuracy. To validate the utility of the pro-

posed method, we perform network data generation us-

ing actual observational data and evaluate the accuracy

of traffic state prediction based on deep learning.

2 Methodology

2.1 Trajectory data-driven network representation

We assume that information K regarding the coordi-

nates and degrees of all intersections within a target

area is available as prior knowledge. K is defined as

follows:

K =
{
(xK

i , yKi , dKi ) | i = 1, 2, . . . , n
}
, (1)

where xK
i and yKi are the coordinates of intersection i,

dKi is the degree of intersection i, and n is the number

of intersections within the target area. The proposed

method generates network data only from K and tra-

jectory data:

T =
{
(xT

j,h, y
T
j,h, c

T
j,h) | j = 1, 2, . . . ,mh;h = 1, 2, . . . , u

}
,

(2)

where xT
j,h and yTj,h are the coordinates of a dot ob-

served at the j-th point of the trajectory for vehicle

h, cTj,h is the timestamp observed at the j-th point of

the trajectory for vehicle h, mh is the number of dots

for vehicle h, and u is the number of vehicles whose

trajectories could be observed in the target area.

In this study, intersections with a certain number of

vehicles traversing in three or more directions are con-

sidered to play an important role as points for route

choice, and the set of such intersections is defined as

major intersections KM . We describe how to extract

major intersections kM ∈ KM from the set of all inter-

sections K using directional statistics. As a preprocess-

ing step, for each dot tj,h ∈ T , an azimuth angle aj,h
to the next dot tj+1,h is calculated. This process is not

performed for the last observed dot of each vehicle. We

extract the set Ti of dots within a distance s for each

intersection ki ∈ K. Ti is described as follows:

Ti = {ti | distance(ki, ti) ≤ s} , (3)
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where distance(ki, ti) represents the distance between

point ki and point ti. For each ki, let Ai be the set of

azimuth angles calculated for all ti.

ai ∈ Ai can be regarded as sampled from the distri-

bution of azimuth angles in the direction of vehicles tra-

versed within a distance s from intersection ki. Assum-

ing that the azimuth angles of vehicles traversing from

each intersection to the links extending in each direction

follow a normal distribution, ai follows a mixed normal

distribution with the degree dKi of the corresponding

intersection as the mixture number. The mathematical

expression is as follows:

ai ∼
dK
i∑

g=1

πi,gN
(
µi,g, σ

2
)
,

dK
i∑

g=1

πi,g = 1, (4)

where µi,g is the mean of each normal distribution

included in the mixed normal distribution, and πi,g is

the weight of each normal distribution. For simplicity,

in this study, the variance of each normal distribution

is assumed to be a fixed value σ2. If we can estimate

πi,g, the number of vehicles traveling in each direction

can be calculated by multiplying it by the total number

of vehicles |Ti| that passed near each intersection ki. In

this study, these parameters are estimated using the

Expectation-Maximization (EM) algorithm. Using the

threshold τ1 for major node extraction, an intersection

ki is considered a major intersection kM if there are at

least three πi,g values that satisfy:

|ti|πi,g ≥ τ1. (5)

We will explain the process of defining links between

major intersections. A threshold τ2 is defined for link

definition. We trace the trajectories of vehicles that tra-

versed within the target area in a specific order. When a

vehicle passes through a range within a distance s from

a major intersection and subsequently passes through a

range within a distance s from a different major inter-

section, we store information about these pairs of major

intersections, the order of passage, and the timestamp.

This process is repeated for all vehicle trajectories,

and for major intersection pairs where the number of

vehicle passages exceeds τ2, links are defined based on

the direction of passage. For all vehicles used in defining

the links, we calculate the average speed of the respec-

tive link by dividing the total distance between the dots

for the given major intersection pair by the total travel

time as defined by Edie [8].

2.2 Evaluation for traffic state prediction with deep

learning approach

In this study, we utilize the proposed network repre-

sentation to perform traffic state prediction using a

deep learning approach and assess its accuracy. Our ap-

proach combines Graph Convolutional Network (GCN),

which is well-suited for learning from data with graph

structures, and Long-Short Term Memory (LSTM),

which is effective for capturing time-evolving patterns.

We evaluate the accuracy of traffic state prediction us-

ing this methodology.

GCN is a method that handles the spatial correla-

tion of inputs by convolving only the features of neigh-

boring nodes for each node. By repeating this convolu-

tion operation, the features of nodes as far apart as the

number of iterations are convolved. This convolution

operation is defined as an approximation of the graph

Fourier transform using the graph Laplacian. The out-

put H(l) of the l + 1th layer is represented as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
, (6)

where H(l) is the output of the lth layer, Ã = A+ I is

a self-connected adjacency matrix, D̃ = D+ I is a self-

connected degree matrix, A is the adjacency matrix, D

is the degree matrix, W(l) is the weight matrix of the

lth layer, and σ is the activation function.

LSTM is a type of recurrent neural network that can

capture long-term dependencies and is well-suited for

sequential data. It consists of input, forget, and output

gates, as well as a memory cell. The equations for LSTM

are as follows:

f t = σ
(
Wf [x

t,ht−1] + bf
)

(7)

it = σ
(
Wi[x

t,ht−1] + bi
)

(8)

gt = tanh
(
Wg[x

t,ht−1] + bg
)

(9)

ct = f t ⊙ ct−1 + it ⊙ gt (10)

ot = σ
(
Wo[x

t,ht−1] + bo
)

(11)

ht = ot ⊙ tanh
(
ct
)
, (12)

where the input at the t − 1th step is ht−1, the

weight matrix isW∗, the bias is b∗, and the adamantine

product is ⊙, f t, it, gt, ct,ot are output of the gates and

the concatenation of matrices is [·, ·].
In this study, the output goes through the GCN

layer twice at each time step, followed by two LSTM

layers, and finally a fully connected layer to obtain the

prediction result (Figure 1). This model is based on the

Temporal Graph Convolutional Network (T-GCN) [9],

which replaces the Gated Recurrent Unit (GRU) in T-

GCN with LSTM. A dropout layer is added before the

fully connected layer to mitigate overfitting.
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Fig. 1 The architecture of GCN-LSTM. We obtain the pre-
diction result after P time steps based on inputs from time
step 1 to T .

3 Empirical Validation

3.1 Target and Dataset

We conducted empirical validation using actual obser-

vation data in Kobe area of Japan (mesh code 523502).

The traffic observation data used in this study consisted

of Electronic Toll Collection System (ETC) 2.0 data,

which is vehicle trajectory data collected by the Min-

istry of Land, Infrastructure, Transport and Tourism of

Japan, and detector data from the Hanshin Expressway

Company. In addition, we compared the characteristics

of the network data constructed in this validation with

those of commonly used network data by using OSM

data.

The ETC 2.0 data consisted of dot data observed

from 00:00, November 1, 2020, to 23:59, November 30,

2020. The detector data focused on one upstream and

one downstream detector between interchanges on the

Hanshin Expressway. In cases where multiple lanes had

detectors, the leftmost lane was selected for analysis.

The OSM data within the target area was obtained us-

ing the Overpass API. We extracted the road segments

that were accessible to automobiles and used them as

our target network. The traffic state data were aggre-

gated at 15-minute intervals. For the aggregation, the

speed was calculated using the harmonic mean with

traffic volume as weights, while traffic volume and oc-

cupancy were averaged. After the aggregation, we per-

formed linear interpolation in the temporal direction for

each detector and road link. For missing values at the

edges, we replaced them with the nearest non-missing

value at the edge. In this validation, the prediction tar-

get is the occupancy of each detector.

3.2 Parameters

We will explain the parameters used for validation. The

parameter τ1 for extracting major nodes was set at 50,

100, 200, and 500 (veh/day) in a stepwise manner, and

the network generation results and traffic state predic-

tion results were compared for each value. The parame-

ter τ2 for link definition was fixed at 50 (veh/day). The

distance s used for determining the passage of trajecto-

ries near intersections was set to 30 (m). The variance

σ2 of each normal distribution within the mixture nor-

mal distribution was fixed at 15. The parameters P = 4

and T = 10 mean that the forecast was made on a 4-

step time scale based on the last 10 steps of observed

data. The training period was from 00:00 on November

1, 2020, to 23:59 on November 23, 2020, and the vali-

dation period was from 00:00 on November 24, 2020, to

23:59 on November 30, 2020.

3.3 Result of Network representation

We show the results of the trajectory data-driven net-

work data generated for each value of τ1 compared with

the original OSM data. Figure 2 - 6 show the visual-

ization of OSM network data and the trajectory data-

driven network data. Table 1 shows the number of nodes

and links for each dataset.

The results demonstrate the ability to adjust the

resolution of the network appropriately by tuning the

threshold value, tau1. In comparison to the original

OSM data, significant reductions in the number of links

and nodes have been achieved. By carefully selecting

tau1 during the major node extraction process, the net-

work can be simplified while retaining the essential con-

nectivity and structural characteristics. This reduction

in links and nodes provides computational benefits, as

it reduces the complexity and computational cost as-

sociated with network-based calculations. The trajec-

tory data-driven network representation offers a more

streamlined and efficient network representation com-

pared to the original OSM data, without sacrificing the

essential information required for transportation anal-

ysis.

3.4 Result of Traffic state prediction

We present the results of traffic state prediction using

the trajectory data-driven network generated in this
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Fig. 2 Original OSM Data

Fig. 3 Trajectory Data-Driven Network Data (τ1 = 50)

Fig. 4 Trajectory Data-Driven Network Data (τ1 = 100)

Table 1 Number of Nodes and Links for Each Result

τ1 nodes edges
50 1975 6949
100 1693 6874
200 999 3033
500 692 4566

validation. Table 2 shows the accuracy of the occu-

pancy projections. Figures 7 - 10 show the prediction

Fig. 5 Trajectory Data-Driven Network Data (τ1 = 200)

Fig. 6 Trajectory Data-Driven Network Data (τ1 = 500)

Fig. 7 Occupancy Prediction Results (τ1 = 50)

accuracy of occupancy for τ1=50,100,200,500. Figures

11 - 13 show the observed and predicted occupancy for

each detector for one day on November 24, 2020, when

τ1=50, 100, 200, and 500. These results show that the

proposed method is promising in terms of accuracy as

well as significant reduction in computational speed in

traffic condition prediction.



6 Shohei Yasuda et al.

Fig. 8 Occupancy Prediction Results (τ1 = 100)

Fig. 9 Occupancy Prediction Results (τ1 = 200)

Fig. 10 Occupancy Prediction Results (τ1 = 500)

4 Discussion and Conclusion

In this study, we proposed a methodology for generating

network data from trajectory data and demonstrated

its utility for traffic state prediction. By leveraging tra-

jectory data and directional statistics, we were able to

Fig. 11 Occupancy Prediction Results (Sensor No.1)

Fig. 12 Occupancy Prediction Results (Sensor No.4)

Fig. 13 Occupancy Prediction Results (Sensor No.6)

Table 2 Accuracy of occupancy prediction

tau1 50 100 200 500
MAE 2.003 2.167 2.231 2.016
RMSE 3.503 3.662 3.712 3.420
MAPE 20.598 22.184 21.690 22.101

extract major intersections and define links without re-

lying on pre-existing network data. This approach has

several advantages over traditional methods that heav-

ily depend on given network data and map-matching

processes.

One of the key contributions of this study is the

ability to generate network data with a resolution suit-

able for specific analysis purposes based on actual ob-

servation data. By adjusting the threshold values, we

were able to control the level of aggregation in the net-

work representation. This flexibility allows researchers
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and practitioners to tailor the network resolution to the

specific needs of their analysis, whether it is national-

level network design or identifying local bottlenecks.

The ability to adjust the resolution also reduces the

computational burden associated with network-based

calculations.

Furthermore, the trajectory data-driven network

representation demonstrated promising results in traf-

fic state prediction using deep learning. This represen-

tation eliminates the requirement for additional map-

matching processes, simplifying the data processing

pipeline. The empirical validation results showcased the

method’s potential in terms of accuracy and significant

reduction in computational speed for traffic condition

prediction.
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